Abstract:Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
Abstract:Unsupervised monocular depth learning generally relies on the photometric relation among temporally adjacent images. Most of previous works use both mean absolute error (MAE) and structure similarity index measure (SSIM) with conventional form as training loss. However, they ignore the effect of different components in the SSIM function and the corresponding hyperparameters on the training. To address these issues, this work proposes a new form of SSIM. Compared with original SSIM function, the proposed new form uses addition rather than multiplication to combine the luminance, contrast, and structural similarity related components in SSIM. The loss function constructed with this scheme helps result in smoother gradients and achieve higher performance on unsupervised depth estimation. We conduct extensive experiments to determine the relatively optimal combination of parameters for our new SSIM. Based on the popular MonoDepth approach, the optimized SSIM loss function can remarkably outperform the baseline on the KITTI-2015 outdoor dataset.
Abstract:Dynamic hedging strategies are essential for effective risk management in derivatives markets, where volatility and market sentiment can greatly impact performance. This paper introduces a novel framework that leverages large language models (LLMs) for sentiment analysis and news analytics to inform hedging decisions. By analyzing textual data from diverse sources like news articles, social media, and financial reports, our approach captures critical sentiment indicators that reflect current market conditions. The framework allows for real-time adjustments to hedging strategies, adapting positions based on continuous sentiment signals. Backtesting results on historical derivatives data reveal that our dynamic hedging strategies achieve superior risk-adjusted returns compared to conventional static approaches. The incorporation of LLM-driven sentiment analysis into hedging practices presents a significant advancement in decision-making processes within derivatives trading. This research showcases how sentiment-informed dynamic hedging can enhance portfolio management and effectively mitigate associated risks.
Abstract:Large language models (LLMs) have emerged as powerful tools in the field of finance, particularly for risk management across different asset classes. In this work, we introduce a Cross-Asset Risk Management framework that utilizes LLMs to facilitate real-time monitoring of equity, fixed income, and currency markets. This innovative approach enables dynamic risk assessment by aggregating diverse data sources, ultimately enhancing decision-making processes. Our model effectively synthesizes and analyzes market signals to identify potential risks and opportunities while providing a holistic view of asset classes. By employing advanced analytics, we leverage LLMs to interpret financial texts, news articles, and market reports, ensuring that risks are contextualized within broader market narratives. Extensive backtesting and real-time simulations validate the framework, showing increased accuracy in predicting market shifts compared to conventional methods. The focus on real-time data integration enhances responsiveness, allowing financial institutions to manage risks adeptly under varying market conditions and promoting financial stability through the advanced application of LLMs in risk analysis.
Abstract:Color constancy (CC) is an important ability of the human visual system to stably perceive the colors of objects despite considerable changes in the color of the light illuminating them. While increasing evidence from the field of neuroscience supports that multiple levels of the visual system contribute to the realization of CC, how the primary visual cortex (V1) plays role in CC is not fully resolved. In specific, double-opponent (DO) neurons in V1 have been thought to contribute to realizing a degree of CC, but the computational mechanism is not clear. We build an electrophysiologically based V1 neural model to learn the color of the light source from a natural image dataset with the ground truth illuminants as the labels. Based on the qualitative and quantitative analysis of the responsive properties of the learned model neurons, we found that both the spatial structures and color weights of the receptive fields of the learned model neurons are quite similar to those of the simple and DO neurons recorded in V1. Computationally, DO cells perform more robustly than the simple cells in V1 for illuminant prediction. Therefore, this work provides computational evidence supporting that V1 DO neurons serve to realize color constancy by encoding the illuminant,which is contradictory to the common hypothesis that V1 contributes to CC by discounting the illuminant using its DO cells. This evidence is expected to not only help resolve the visual mechanisms of CC, but also provide inspiration to develop more effective computer vision models.
Abstract:3D microscopic cerebrovascular images are characterized by their high resolution, presenting significant annotation challenges, large data volumes, and intricate variations in detail. Together, these factors make achieving high-quality, efficient whole-brain segmentation particularly demanding. In this paper, we propose a novel Vessel-Pattern-Based Semi-Supervised Distillation pipeline (VpbSD) to address the challenges of 3D microscopic cerebrovascular segmentation. This pipeline initially constructs a vessel-pattern codebook that captures diverse vascular structures from unlabeled data during the teacher model's pretraining phase. In the knowledge distillation stage, the codebook facilitates the transfer of rich knowledge from a heterogeneous teacher model to a student model, while the semi-supervised approach further enhances the student model's exposure to diverse learning samples. Experimental results on real-world data, including comparisons with state-of-the-art methods and ablation studies, demonstrate that our pipeline and its individual components effectively address the challenges inherent in microscopic cerebrovascular segmentation.
Abstract:Effective retinal vessel segmentation requires a sophisticated integration of global contextual awareness and local vessel continuity. To address this challenge, we propose the Graph Capsule Convolution Network (GCC-UNet), which merges capsule convolutions with CNNs to capture both local and global features. The Graph Capsule Convolution operator is specifically designed to enhance the representation of global context, while the Selective Graph Attention Fusion module ensures seamless integration of local and global information. To further improve vessel continuity, we introduce the Bottleneck Graph Attention module, which incorporates Channel-wise and Spatial Graph Attention mechanisms. The Multi-Scale Graph Fusion module adeptly combines features from various scales. Our approach has been rigorously validated through experiments on widely used public datasets, with ablation studies confirming the efficacy of each component. Comparative results highlight GCC-UNet's superior performance over existing methods, setting a new benchmark in retinal vessel segmentation. Notably, this work represents the first integration of vanilla, graph, and capsule convolutional techniques in the domain of medical image segmentation.
Abstract:From a perspective of feature matching, optical flow estimation for event cameras involves identifying event correspondences by comparing feature similarity across accompanying event frames. In this work, we introduces an effective and robust high-dimensional (HD) feature descriptor for event frames, utilizing Vector Symbolic Architectures (VSA). The topological similarity among neighboring variables within VSA contributes to the enhanced representation similarity of feature descriptors for flow-matching points, while its structured symbolic representation capacity facilitates feature fusion from both event polarities and multiple spatial scales. Based on this HD feature descriptor, we propose a novel feature matching framework for event-based optical flow, encompassing both model-based (VSA-Flow) and self-supervised learning (VSA-SM) methods. In VSA-Flow, accurate optical flow estimation validates the effectiveness of HD feature descriptors. In VSA-SM, a novel similarity maximization method based on the HD feature descriptor is proposed to learn optical flow in a self-supervised way from events alone, eliminating the need for auxiliary grayscale images. Evaluation results demonstrate that our VSA-based method achieves superior accuracy in comparison to both model-based and self-supervised learning methods on the DSEC benchmark, while remains competitive among both methods on the MVSEC benchmark. This contribution marks a significant advancement in event-based optical flow within the feature matching methodology.
Abstract:PointGoal navigation in indoor environment is a fundamental task for personal robots to navigate to a specified point. Recent studies solved this PointGoal navigation task with near-perfect success rate in photo-realistically simulated environments, under the assumptions with noiseless actuation and most importantly, perfect localization with GPS and compass sensors. However, accurate GPS signal can not be obtained in real indoor environment. To improve the pointgoal navigation accuracy in real indoor, we proposed novel vision and vision-motion calibration strategies to train visual and motion path integration in unsupervised manner. Sepecifically, visual calibration computes the relative pose of the agent from the re-projection error of two adjacent frames, and then replaces the accurate GPS signal with the path integration. This pseudo position is also used to calibrate self-motion integration which assists agent to update their internal perception of location and helps improve the success rate of navigation. The training and inference process only use RGB, depth, collision as well as self-action information. The experiments show that the proposed system achieves satisfactory results and outperforms the partially supervised learning algorithms on the popular Gibson dataset.
Abstract:Most of the existing deep learning based methods for vessel segmentation neglect two important aspects of retinal vessels, one is the orientation information of vessels, and the other is the contextual information of the whole fundus region. In this paper, we propose a robust Orientation and Context Entangled Network (denoted as OCE-Net), which has the capability of extracting complex orientation and context information of the blood vessels. To achieve complex orientation aware, a Dynamic Complex Orientation Aware Convolution (DCOA Conv) is proposed to extract complex vessels with multiple orientations for improving the vessel continuity. To simultaneously capture the global context information and emphasize the important local information, a Global and Local Fusion Module (GLFM) is developed to simultaneously model the long-range dependency of vessels and focus sufficient attention on local thin vessels. A novel Orientation and Context Entangled Non-local (OCE-NL) module is proposed to entangle the orientation and context information together. In addition, an Unbalanced Attention Refining Module (UARM) is proposed to deal with the unbalanced pixel numbers of background, thick and thin vessels. Extensive experiments were performed on several commonly used datasets (DRIVE, STARE and CHASEDB1) and some more challenging datasets (AV-WIDE, UoA-DR, RFMiD and UK Biobank). The ablation study shows that the proposed method achieves promising performance on maintaining the continuity of thin vessels and the comparative experiments demonstrate that our OCE-Net can achieve state-of-the-art performance on retinal vessel segmentation.