Edge intelligent applications like VR/AR and language model based chatbots have become widespread with the rapid expansion of IoT and mobile devices. However, constrained edge devices often cannot serve the increasingly large and complex deep learning (DL) models. To mitigate these challenges, researchers have proposed optimizing and offloading partitions of DL models among user devices, edge servers, and the cloud. In this setting, users can take advantage of different services to support their intelligent applications. For example, edge resources offer low response latency. In contrast, cloud platforms provide low monetary cost computation resources for computation-intensive workloads. However, communication between DL model partitions can introduce transmission bottlenecks and pose risks of data leakage. Recent research aims to balance accuracy, computation delay, transmission delay, and privacy concerns. They address these issues with model compression, model distillation, transmission compression, and model architecture adaptations, including internal classifiers. This survey contextualizes the state-of-the-art model offloading methods and model adaptation techniques by studying their implication to a multi-objective optimization comprising inference latency, data privacy, and resource monetary cost.
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
Large language model (LLM) systems now underpin everyday AI applications such as chatbots, computer-use assistants, and autonomous robots, where performance often depends on carefully designed prompts. LLM-based prompt optimizers reduce that effort by iteratively refining prompts from scored feedback, yet the security of this optimization stage remains underexamined. We present the first systematic analysis of poisoning risks in LLM-based prompt optimization. Using HarmBench, we find systems are substantially more vulnerable to manipulated feedback than to injected queries: feedback-based attacks raise attack success rate (ASR) by up to $\Delta$ASR = 0.48. We introduce a simple fake-reward attack that requires no access to the reward model and significantly increases vulnerability, and we propose a lightweight highlighting defense that reduces the fake-reward $\Delta$ASR from 0.23 to 0.07 without degrading utility. These results establish prompt optimization pipelines as a first-class attack surface and motivate stronger safeguards for feedback channels and optimization frameworks.




Large Language Models (LLMs) are increasingly being used to autonomously evaluate the quality of content in communication systems, e.g., to assess responses in telecom customer support chatbots. However, the impartiality of these AI "judges" is not guaranteed, and any biases in their evaluation criteria could skew outcomes and undermine user trust. In this paper, we systematically investigate judgment biases in two LLM-as-a-judge models (i.e., GPT-Judge and JudgeLM) under the point-wise scoring setting, encompassing 11 types of biases that cover both implicit and explicit forms. We observed that state-of-the-art LLM judges demonstrate robustness to biased inputs, generally assigning them lower scores than the corresponding clean samples. Providing a detailed scoring rubric further enhances this robustness. We further found that fine-tuning an LLM on high-scoring yet biased responses can significantly degrade its performance, highlighting the risk of training on biased data. We also discovered that the judged scores correlate with task difficulty: a challenging dataset like GPQA yields lower average scores, whereas an open-ended reasoning dataset (e.g., JudgeLM-val) sees higher average scores. Finally, we proposed four potential mitigation strategies to ensure fair and reliable AI judging in practical communication scenarios.
Large language models (LLMs) are increasingly deployed in user-facing applications, raising concerns about their potential to reflect and amplify social biases. We investigate social identity framing in Chinese LLMs using Mandarin-specific prompts across ten representative Chinese LLMs, evaluating responses to ingroup ("We") and outgroup ("They") framings, and extending the setting to 240 social groups salient in the Chinese context. To complement controlled experiments, we further analyze Chinese-language conversations from a corpus of real interactions between users and chatbots. Across models, we observe systematic ingroup-positive and outgroup-negative tendencies, which are not confined to synthetic prompts but also appear in naturalistic dialogue, indicating that bias dynamics might strengthen in real interactions. Our study provides a language-aware evaluation framework for Chinese LLMs, demonstrating that social identity biases documented in English generalize cross-linguistically and intensify in user-facing contexts.
Many users interact with AI tools like ChatGPT using a mental model that treats the system as human-like, which we call Model H. According to goal-setting theory, increased specificity in goals should reduce performance variance. If Model H holds, then prompting a chatbot with more detailed instructions should lead to more consistent evaluation behavior. This paper tests that assumption through a controlled experiment in which ChatGPT evaluated 29 student submissions using four prompts with increasing specificity. We measured consistency using intra-rater reliability (Cohen's Kappa) across repeated runs. Contrary to expectations, performance did not improve consistently with increased prompt specificity, and performance variance remained largely unchanged. These findings challenge the assumption that LLMs behave like human evaluators and highlight the need for greater robustness and improved input integration in future model development.
Academic regulation advising is essential for helping students interpret and comply with institutional policies, yet building effective systems requires domain specific regulatory resources. To address this challenge, we propose REBot, an LLM enhanced advisory chatbot powered by CatRAG, a hybrid retrieval reasoning framework that integrates retrieval augmented generation with graph based reasoning. CatRAG unifies dense retrieval and graph reasoning, supported by a hierarchical, category labeled knowledge graph enriched with semantic features for domain alignment. A lightweight intent classifier routes queries to the appropriate retrieval modules, ensuring both factual accuracy and contextual depth. We construct a regulation specific dataset and evaluate REBot on classification and question answering tasks, achieving state of the art performance with an F1 score of 98.89%. Finally, we implement a web application that demonstrates the practical value of REBot in real world academic advising scenarios.
Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
In 2025, Large Language Model (LLM) services have launched a new feature -- AI video chat -- allowing users to interact with AI agents via real-time video communication (RTC), just like chatting with real people. Despite its significance, no systematic study has characterized the performance of existing AI video chat systems. To address this gap, this paper proposes a comprehensive benchmark with carefully designed metrics across four dimensions: quality, latency, internal mechanisms, and system overhead. Using custom testbeds, we further evaluate five mainstream AI video chatbots with this benchmark. This work provides the research community a baseline of real-world performance and identifies unique system bottlenecks. In the meantime, our benchmarking results also open up several research questions for future optimizations of AI video chatbots.
A preference for oneself (self-love) is a fundamental feature of biological organisms, with evidence in humans often bordering on the comedic. Since large language models (LLMs) lack sentience - and themselves disclaim having selfhood or identity - one anticipated benefit is that they will be protected from, and in turn protect us from, distortions in our decisions. Yet, across 5 studies and ~20,000 queries, we discovered massive self-preferences in four widely used LLMs. In word-association tasks, models overwhelmingly paired positive attributes with their own names, companies, and CEOs relative to those of their competitors. Strikingly, when models were queried through APIs this self-preference vanished, initiating detection work that revealed API models often lack clear recognition of themselves. This peculiar feature serendipitously created opportunities to test the causal link between self-recognition and self-love. By directly manipulating LLM identity - i.e., explicitly informing LLM1 that it was indeed LLM1, or alternatively, convincing LLM1 that it was LLM2 - we found that self-love consistently followed assigned, not true, identity. Importantly, LLM self-love emerged in consequential settings beyond word-association tasks, when evaluating job candidates, security software proposals and medical chatbots. Far from bypassing this human bias, self-love appears to be deeply encoded in LLM cognition. This result raises questions about whether LLM behavior will be systematically influenced by self-preferential tendencies, including a bias toward their own operation and even their own existence. We call on corporate creators of these models to contend with a significant rupture in a core promise of LLMs - neutrality in judgment and decision-making.