Abstract:Large language models (LLMs) are increasingly evaluated in clinical settings using multi-dimensional rubrics which quantify reasoning quality, safety, and patient-centeredness. Yet, replicating specific mistakes in other LLM models is not straightforward and often requires manual effort. We introduce MedMistake, an automatic pipeline that extracts mistakes LLMs make in patient-doctor conversations and converts them into a benchmark of single-shot QA pairs. Our pipeline (1) creates complex, conversational data between an LLM patient and LLM doctor, (2) runs an evaluation with a committee of 2 LLM judges across a variety of dimensions and (3) creates simplified single-shot QA scenarios from those mistakes. We release MedMistake-All, a dataset of 3,390 single-shot QA pairs where GPT-5 and Gemini 2.5 Pro are currently failing to answer correctly, as judged by two LLM judges. We used medical experts to validate a subset of 211/3390 questions (MedMistake-Bench), which we used to run a final evaluation of 12 frontier LLMs: Claude Opus 4.5, Claude Sonnet 4.5, DeepSeek-Chat, Gemini 2.5 Pro, Gemini 3 Pro, GPT-4o, GPT-5, GPT-5.1, GPT-5.2, Grok 4, Grok 4.1, Mistral Large. We found that GPT models, Claude and Grok obtained the best performance on MedMistake-Bench. We release both the doctor-validated benchmark (MedMistake-Bench), as well as the full dataset (MedMistake-All) at https://huggingface.co/datasets/TheLumos/MedicalMistakeBenchmark.
Abstract:As large language models (LLMs) become primary sources of health information for millions, their accuracy in women's health remains critically unexamined. We introduce the Women's Health Benchmark (WHB), the first benchmark evaluating LLM performance specifically in women's health. Our benchmark comprises 96 rigorously validated model stumps covering five medical specialties (obstetrics and gynecology, emergency medicine, primary care, oncology, and neurology), three query types (patient query, clinician query, and evidence/policy query), and eight error types (dosage/medication errors, missing critical information, outdated guidelines/treatment recommendations, incorrect treatment advice, incorrect factual information, missing/incorrect differential diagnosis, missed urgency, and inappropriate recommendations). We evaluated 13 state-of-the-art LLMs and revealed alarming gaps: current models show approximately 60\% failure rates on the women's health benchmark, with performance varying dramatically across specialties and error types. Notably, models universally struggle with "missed urgency" indicators, while newer models like GPT-5 show significant improvements in avoiding inappropriate recommendations. Our findings underscore that AI chatbots are not yet fully able of providing reliable advice in women's health.