Abstract:While Large Language Models (LLMs) have evolved into distinct platforms with unique interface designs and capabilities, existing public datasets treat models as generic text generators, stripping away the interface context that actively shapes user interaction. To address this limitation, we present ShareChat, a large-scale, cross-platform corpus comprising 142,808 conversations and over 660,000 turns collected from publicly shared URLs across five major platforms: ChatGPT, Claude, Gemini, Perplexity, and Grok. ShareChat distinguishes itself by preserving native platform affordances often lost in standard logs, including reasoning traces, source links, and code artifacts, while spanning 101 languages over the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. We demonstrate the dataset's multifaceted utility through three representative analyses: (1) analyzing conversation completeness to measure user intent satisfaction; (2) evaluating source citation behaviors in content generation; and (3) conducting temporal analysis to track evolving usage patterns. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild.
Abstract:The cold-start user issue further compromises the effectiveness of recommender systems in limiting access to the historical behavioral information. It is an effective pipeline to optimize instructional prompts on a few-shot large language model (LLM) used in recommender tasks. We introduce a context-conditioned prompt formulation method P(u,\ Ds)\ \rightarrow\ R\widehat, where u is a cold-start user profile, Ds is a curated support set, and R\widehat is the predicted ranked list of items. Based on systematic experimentation with transformer-based autoregressive LLMs (BioGPT, LLaMA-2, GPT-4), we provide empirical evidence that optimal exemplar injection and instruction structuring can significantly improve the precision@k and NDCG scores of such models in low-data settings. The pipeline uses token-level alignments and embedding space regularization with a greater semantic fidelity. Our findings not only show that timely composition is not merely syntactic but also functional as it is in direct control of attention scales and decoder conduct through inference. This paper shows that prompt-based adaptation may be considered one of the ways to address cold-start recommendation issues in LLM-based pipelines.
Abstract:Combining data-driven applications with control systems plays a key role in recent Autonomous Car research. This thesis offers a structured review of the latest literature on Deep Reinforcement Learning (DRL) within the realm of autonomous vehicle Path Planning and Control. It collects a series of DRL methodologies and algorithms and their applications in the field, focusing notably on their roles in trajectory planning and dynamic control. In this review, we delve into the application outcomes of DRL technologies in this domain. By summarizing these literatures, we highlight potential challenges, aiming to offer insights that might aid researchers engaged in related fields.
Abstract:An intuitive control method for the flying trot, which combines offline trajectory planning with real-time balance control, is presented. The motion features of running animals in the vertical direction were analysed using the spring-load-inverted-pendulum (SLIP) model, and the foot trajectory of the robot was planned, so the robot could run similar to an animal capable of vertical flight, according to the given height and speed of the trunk. To improve the robustness of running, a posture control method based on a foot acceleration adjustment is proposed. A novel kinematic based CoM observation method and CoM regulation method is present to enhance the stability of locomotion. To reduce the impact force when the robot interacts with the environment, the virtual model control method is used in the control of the foot trajectory to achieve active compliance. By selecting the proper parameters for the virtual model, the oscillation motion of the virtual model and the planning motion of the support foot are synchronized to avoid the large disturbance caused by the oscillation motion of the virtual model in relation to the robot motion. The simulation and experiment using the quadruped robot Billy are reported. In the experiment, the maximum speed of the robot could reach 4.73 times the body length per second, which verified the feasibility of the control method.