Anomaly detection is the process of identifying unusual patterns or outliers in data that do not conform to expected behavior.
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
Advanced Persistent Threats (APTs) are sophisticated, long-term cyberattacks that are difficult to detect because they operate stealthily and often blend into normal system behavior. This paper presents a neuro-symbolic anomaly detection framework that combines a Graph Autoencoder (GAE) with rare pattern mining to identify APT-like activities in system-level provenance data. Our approach first constructs a process behavioral graph using k-Nearest Neighbors based on feature similarity, then learns normal relational structure using a Graph Autoencoder. Anomaly candidates are identified through deviations between observed and reconstructed graph structure. To further improve detection, we integrate an rare pattern mining module that discovers infrequent behavioral co-occurrences and uses them to boost anomaly scores for processes exhibiting rare signatures. We evaluate the proposed method on the DARPA Transparent Computing datasets and show that rare-pattern boosting yields substantial gains in anomaly ranking quality over the baseline GAE. Compared with existing unsupervised approaches on the same benchmark, our single unified model consistently outperforms individual context-based detectors and achieves performance competitive with ensemble aggregation methods that require multiple separate detectors. These results highlight the value of coupling graph-based representation learning with classical pattern mining to improve both effectiveness and interpretability in provenance-based security anomaly detection.
Misinformation on social media poses a critical threat to information credibility, as its diverse and context-dependent nature complicates detection. Large language model-empowered multi-agent systems (MAS) present a promising paradigm that enables cooperative reasoning and collective intelligence to combat this threat. However, conventional MAS suffer from an information-drowning problem, where abundant truthful content overwhelms sparse and weak deceptive cues. With full input access, agents tend to focus on dominant patterns, and inter-agent communication further amplifies this bias. To tackle this issue, we propose PAMAS, a multi-agent framework with perspective aggregation, which employs hierarchical, perspective-aware aggregation to highlight anomaly cues and alleviate information drowning. PAMAS organizes agents into three roles: Auditors, Coordinators, and a Decision-Maker. Auditors capture anomaly cues from specialized feature subsets; Coordinators aggregate their perspectives to enhance coverage while maintaining diversity; and the Decision-Maker, equipped with evolving memory and full contextual access, synthesizes all subordinate insights to produce the final judgment. Furthermore, to improve efficiency in multi-agent collaboration, PAMAS incorporates self-adaptive mechanisms for dynamic topology optimization and routing-based inference, enhancing both efficiency and scalability. Extensive experiments on multiple benchmark datasets demonstrate that PAMAS achieves superior accuracy and efficiency, offering a scalable and trustworthy way for misinformation detection.
Machine learning-based anomaly detection systems are increasingly being adopted in 5G Core networks to monitor complex, high-volume traffic. However, most existing approaches are evaluated under strong assumptions that rarely hold in operational environments, notably the availability of independent and identically distributed (IID) data and the absence of adaptive attackers.In this work, we study the problem of detecting 5G attacks \textit{in the wild}, focusing on realistic deployment settings. We propose a set of Security-Aware Guidelines for Evaluating anomaly detectors in 5G Core Network (SAGE-5GC), driven by domain knowledge and consideration of potential adversarial threats. Using a realistic 5G Core dataset, we first train several anomaly detectors and assess their baseline performance against standard 5GC control-plane cyberattacks targeting PFCP-based network services.We then extend the evaluation to adversarial settings, where an attacker tries to manipulate the observable features of the network traffic to evade detection, under the constraint that the intended functionality of the malicious traffic is preserved. Starting from a selected set of controllable features, we analyze model sensitivity and adversarial robustness through randomized perturbations. Finally, we introduce a practical optimization strategy based on genetic algorithms that operates exclusively on attacker-controllable features and does not require prior knowledge of the underlying detection model. Our experimental results show that adversarially crafted attacks can substantially degrade detection performance, underscoring the need for robust, security-aware evaluation methodologies for anomaly detection in 5G networks deployed in the wild.
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
Time series anomaly detection is a critical task across various industrial domains. However, capturing temporal dependencies and multivariate correlations within patch-level representation learning remains underexplored, and reliance on single-scale patterns limits the detection of anomalies across different temporal ranges. Furthermore, focusing on normal data representations makes models vulnerable to distribution shifts at inference time. To address these limitations, we propose Codebook-based Online-adaptive Multi-scale Embedding for Time-series anomaly detection (COMET), which consists of three key components: (1) Multi-scale Patch Encoding captures temporal dependencies and inter-variable correlations across multiple patch scales. (2) Vector-Quantized Coreset learns representative normal patterns via codebook and detects anomalies with a dual-score combining quantization error and memory distance. (3) Online Codebook Adaptation generates pseudo-labels based on codebook entries and dynamically adapts the model at inference through contrastive learning. Experiments on five benchmark datasets demonstrate that COMET achieves the best performance in 36 out of 45 evaluation metrics, validating its effectiveness across diverse environments.
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
Designing front-ends for speech deepfake detectors primarily focuses on two categories. Hand-crafted filterbank features are transparent but are limited in capturing high-level semantic details, often resulting in performance gaps compared to self-supervised (SSL) features. SSL features, in turn, lack interpretability and may overlook fine-grained spectral anomalies. We propose the WST-X series, a novel family of feature extractors that combines the best of both worlds via the wavelet scattering transform (WST), integrating wavelets with nonlinearities analogous to deep convolutional networks. We investigate 1D and 2D WSTs to extract acoustic details and higher-order structural anomalies, respectively. Experimental results on the recent and challenging Deepfake-Eval-2024 dataset indicate that WST-X outperforms existing front-ends by a wide margin. Our analysis reveals that a small averaging scale ($J$), combined with high-frequency and directional resolutions ($Q, L$), is critical for capturing subtle artifacts. This underscores the value of translation-invariant and deformation-stable features for robust and interpretable speech deepfake detection.
Object detection is pivotal in computer vision, yet its immense computational demands make deployment slow and power-hungry, motivating quantization. However, task-irrelevant morphologies such as background clutter and sensor noise induce redundant activations (or anomalies). These anomalies expand activation ranges and skew activation distributions toward task-irrelevant responses, complicating bit allocation and weakening the preservation of informative features. Without a clear criterion to distinguish anomalies, suppressing them can inadvertently discard useful information. To address this, we present InlierQ, an inlier-centric post-training quantization approach that separates anomalies from informative inliers. InlierQ computes gradient-aware volume saliency scores, classifies each volume as an inlier or anomaly, and fits a posterior distribution over these scores using the Expectation-Maximization (EM) algorithm. This design suppresses anomalies while preserving informative features. InlierQ is label-free, drop-in, and requires only 64 calibration samples. Experiments on the COCO and nuScenes benchmarks show consistent reductions in quantization error for camera-based (2D and 3D) and LiDAR-based (3D) object detection.