Abstract:Prompt-based methods have achieved promising results in most few-shot text classification tasks. However, for readability assessment tasks, traditional prompt methods lackcrucial linguistic knowledge, which has already been proven to be essential. Moreover, previous studies on utilizing linguistic features have shown non-robust performance in few-shot settings and may even impair model performance.To address these issues, we propose a novel prompt-based tuning framework that incorporates rich linguistic knowledge, called Feature Prompt Tuning (FPT). Specifically, we extract linguistic features from the text and embed them into trainable soft prompts. Further, we devise a new loss function to calibrate the similarity ranking order between categories. Experimental results demonstrate that our proposed method FTP not only exhibits a significant performance improvement over the prior best prompt-based tuning approaches, but also surpasses the previous leading methods that incorporate linguistic features. Also, our proposed model significantly outperforms the large language model gpt-3.5-turbo-16k in most cases. Our proposed method establishes a new architecture for prompt tuning that sheds light on how linguistic features can be easily adapted to linguistic-related tasks.
Abstract:Advances in automated essay scoring (AES) have traditionally relied on labeled essays, requiring tremendous cost and expertise for their acquisition. Recently, large language models (LLMs) have achieved great success in various tasks, but their potential is less explored in AES. In this paper, we propose Multi Trait Specialization (MTS), a zero-shot prompting framework to elicit essay scoring capabilities in LLMs. Specifically, we leverage ChatGPT to decompose writing proficiency into distinct traits and generate scoring criteria for each trait. Then, an LLM is prompted to extract trait scores from several conversational rounds, each round scoring one of the traits based on the scoring criteria. Finally, we derive the overall score via trait averaging and min-max scaling. Experimental results on two benchmark datasets demonstrate that MTS consistently outperforms straightforward prompting (Vanilla) in average QWK across all LLMs and datasets, with maximum gains of 0.437 on TOEFL11 and 0.355 on ASAP. Additionally, with the help of MTS, the small-sized Llama2-13b-chat substantially outperforms ChatGPT, facilitating an effective deployment in real applications.
Abstract:We present a parameter-efficient method for continual video question-answering (VidQA) learning. Our method, named DAM, uses the proposed Dynamic Adapter Merging to (i) mitigate catastrophic forgetting, (ii) enable efficient adaptation to continually arriving datasets, (iii) handle inputs from unknown datasets during inference, and (iv) enable knowledge sharing across similar dataset domains. Given a set of continually streaming VidQA datasets, we sequentially train dataset-specific adapters for each dataset while freezing the parameters of a large pretrained video-language backbone. During inference, given a video-question sample from an unknown domain, our method first uses the proposed non-parametric router function to compute a probability for each adapter, reflecting how relevant that adapter is to the current video-question input instance. Subsequently, the proposed dynamic adapter merging scheme aggregates all the adapter weights into a new adapter instance tailored for that particular test sample to compute the final VidQA prediction, mitigating the impact of inaccurate router predictions and facilitating knowledge sharing across domains. Our DAM model outperforms prior state-of-the-art continual learning approaches by 9.1% while exhibiting 1.9% less forgetting on 6 VidQA datasets spanning various domains. We further extend DAM to continual image classification and image QA and outperform prior methods by a large margin. The code is publicly available at: https://github.com/klauscc/DAM
Abstract:Medical image segmentation is increasingly reliant on deep learning techniques, yet the promising performance often come with high annotation costs. This paper introduces Weak-Mamba-UNet, an innovative weakly-supervised learning (WSL) framework that leverages the capabilities of Convolutional Neural Network (CNN), Vision Transformer (ViT), and the cutting-edge Visual Mamba (VMamba) architecture for medical image segmentation, especially when dealing with scribble-based annotations. The proposed WSL strategy incorporates three distinct architecture but same symmetrical encoder-decoder networks: a CNN-based UNet for detailed local feature extraction, a Swin Transformer-based SwinUNet for comprehensive global context understanding, and a VMamba-based Mamba-UNet for efficient long-range dependency modeling. The key concept of this framework is a collaborative and cross-supervisory mechanism that employs pseudo labels to facilitate iterative learning and refinement across the networks. The effectiveness of Weak-Mamba-UNet is validated on a publicly available MRI cardiac segmentation dataset with processed scribble annotations, where it surpasses the performance of a similar WSL framework utilizing only UNet or SwinUNet. This highlights its potential in scenarios with sparse or imprecise annotations. The source code is made publicly accessible.
Abstract:Medical image segmentation is essential in diagnostics, treatment planning, and healthcare, with deep learning offering promising advancements. Notably, Convolutional Neural Network (CNN) excel in capturing local image features, whereas Vision Transformer (ViT) adeptly model long-range dependencies through multi-head self-attention mechanisms. Despite their strengths, both CNN and ViT face challenges in efficiently processing long-range dependencies within medical images, often requiring substantial computational resources. This issue, combined with the high cost and limited availability of expert annotations, poses significant obstacles to achieving precise segmentation. To address these challenges, this paper introduces the Semi-Mamba-UNet, which integrates a visual mamba-based UNet architecture with a conventional UNet into a semi-supervised learning (SSL) framework. This innovative SSL approach leverages dual networks to jointly generate pseudo labels and cross supervise each other, drawing inspiration from consistency regularization techniques. Furthermore, we introduce a self-supervised pixel-level contrastive learning strategy, employing a projector pair to further enhance feature learning capabilities. Our comprehensive evaluation on a publicly available MRI cardiac segmentation dataset, comparing against various SSL frameworks with different UNet-based segmentation networks, highlights the superior performance of Semi-Mamba-UNet. The source code has been made publicly accessible.
Abstract:In recent advancements in medical image analysis, Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have set significant benchmarks. While the former excels in capturing local features through its convolution operations, the latter achieves remarkable global context understanding by leveraging self-attention mechanisms. However, both architectures exhibit limitations in efficiently modeling long-range dependencies within medical images, which is a critical aspect for precise segmentation. Inspired by the Mamba architecture, known for its proficiency in handling long sequences and global contextual information with enhanced computational efficiency as a State Space Model (SSM), we propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability. Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network. This design facilitates a comprehensive feature learning process, capturing intricate details and broader semantic contexts within medical images. We introduce a novel integration mechanism within the VMamba blocks to ensure seamless connectivity and information flow between the encoder and decoder paths, enhancing the segmentation performance. We conducted experiments on publicly available MRI cardiac multi-structures segmentation dataset. The results show that Mamba-UNet outperforms UNet, Swin-UNet in medical image segmentation under the same hyper-parameter setting. The source code and baseline implementations are available.
Abstract:We present LLoVi, a language-based framework for long-range video question-answering (LVQA). Unlike prior long-range video understanding methods, which are often costly and require specialized long-range video modeling design (e.g., memory queues, state-space layers, etc.), our approach uses a frame/clip-level visual captioner (e.g., BLIP2, LaViLa, LLaVA) coupled with a Large Language Model (GPT-3.5, GPT-4) leading to a simple yet surprisingly effective LVQA framework. Specifically, we decompose short and long-range modeling aspects of LVQA into two stages. First, we use a short-term visual captioner to generate textual descriptions of short video clips (0.5-8s in length) densely sampled from a long input video. Afterward, an LLM aggregates the densely extracted short-term captions to perform long-range temporal reasoning needed to understand the whole video and answer a question. To analyze what makes our simple framework so effective, we thoroughly evaluate various components of our system. Our empirical analysis reveals that the choice of the visual captioner and LLM is critical for good LVQA performance. Furthermore, we show that a specialized prompt that asks the LLM first to summarize the noisy short-term visual captions and then answer a given input question leads to a significant LVQA performance boost. On EgoSchema, which is best known as a very long-form video question-answering benchmark, our method achieves 50.3% accuracy, outperforming the previous best-performing approach by 18.1% (absolute gain). In addition, our approach outperforms the previous state-of-the-art by 4.1% and 3.1% on NeXT-QA and IntentQA. We also extend LLoVi to grounded LVQA and show that it outperforms all prior methods on the NeXT-GQA dataset. We will release our code at https://github.com/CeeZh/LLoVi.
Abstract:Wireless backhaul offers a more cost-effective, time-efficient, and reconfigurable solution than wired backhaul to connect the edge-computing cells to the core network. As the amount of transmitted data increases, the low-rank characteristic of Line-of-Sight (LoS) channel severely limits the growth of channel capacity in the point-to-point backhaul transmission scenario. Orbital Angular Momentum (OAM), also known as vortex beam, is considered a potentially effective solution for high-capacity LoS wireless transmission. However, due to the shortcomings of its energy divergence and the specificity of multi-mode divergence angles, OAM beams have been difficult to apply in practical communication systems for a long time. In this work, a novel multi-mode convergent transmission with co-scale reception scheme is proposed. OAM beams of different modes can be transmitted with the same beam divergent angle, while the wavefronts are tailored by the ring-shaped Airy compensation lens during propagation, so that the energy will converge to the same spatial area for receiving. Based on this scheme, not only is the Signal-to-Noise Ratio (SNR) greatly improved, but it is also possible to simultaneously receive and demodulate OAM channels multiplexed with different modes in a limited space area. Through prototype experiments, we demonstrated that 3 kinds of OAM modes are tunable, and different channels can be separated simultaneously with receiving power increasing. The measurement isolations between channels are over 11 dB, which ensures a reliable 16-QAM multiplexing wireless transmission demo system. This work may explore the potential applications of OAM-based multi-mode convergent transmission in LoS wireless communications.
Abstract:The canonical approach to video-text retrieval leverages a coarse-grained or fine-grained alignment between visual and textual information. However, retrieving the correct video according to the text query is often challenging as it requires the ability to reason about both high-level (scene) and low-level (object) visual clues and how they relate to the text query. To this end, we propose a Unified Coarse-to-fine Alignment model, dubbed UCoFiA. Specifically, our model captures the cross-modal similarity information at different granularity levels. To alleviate the effect of irrelevant visual clues, we also apply an Interactive Similarity Aggregation module (ISA) to consider the importance of different visual features while aggregating the cross-modal similarity to obtain a similarity score for each granularity. Finally, we apply the Sinkhorn-Knopp algorithm to normalize the similarities of each level before summing them, alleviating over- and under-representation issues at different levels. By jointly considering the crossmodal similarity of different granularity, UCoFiA allows the effective unification of multi-grained alignments. Empirically, UCoFiA outperforms previous state-of-the-art CLIP-based methods on multiple video-text retrieval benchmarks, achieving 2.4%, 1.4% and 1.3% improvements in text-to-video retrieval R@1 on MSR-VTT, Activity-Net, and DiDeMo, respectively. Our code is publicly available at https://github.com/Ziyang412/UCoFiA.
Abstract:Conversational recommendation systems (CRS) aim to timely and proactively acquire user dynamic preferred attributes through conversations for item recommendation. In each turn of CRS, there naturally have two decision-making processes with different roles that influence each other: 1) director, which is to select the follow-up option (i.e., ask or recommend) that is more effective for reducing the action space and acquiring user preferences; and 2) actor, which is to accordingly choose primitive actions (i.e., asked attribute or recommended item) that satisfy user preferences and give feedback to estimate the effectiveness of the director's option. However, existing methods heavily rely on a unified decision-making module or heuristic rules, while neglecting to distinguish the roles of different decision procedures, as well as the mutual influences between them. To address this, we propose a novel Director-Actor Hierarchical Conversational Recommender (DAHCR), where the director selects the most effective option, followed by the actor accordingly choosing primitive actions that satisfy user preferences. Specifically, we develop a dynamic hypergraph to model user preferences and introduce an intrinsic motivation to train from weak supervision over the director. Finally, to alleviate the bad effect of model bias on the mutual influence between the director and actor, we model the director's option by sampling from a categorical distribution. Extensive experiments demonstrate that DAHCR outperforms state-of-the-art methods.