Abstract:Explainable artificial intelligence (XAI) is concerned with producing explanations indicating the inner workings of models. For a Rashomon set of similarly performing models, explanations provide a way of disambiguating the behavior of individual models, helping select models for deployment. However explanations themselves can vary depending on the explainer used, and need to be evaluated. In the paper "Evaluating Model Explanations without Ground Truth", we proposed three principles of explanation evaluation and a new method "AXE" to evaluate the quality of feature-importance explanations. We go on to illustrate how evaluation metrics that rely on comparing model explanations against ideal ground truth explanations obscure behavioral differences within a Rashomon set. Explanation evaluation aligned with our proposed principles would highlight these differences instead, helping select models from the Rashomon set. The selection of alternate models from the Rashomon set can maintain identical predictions but mislead explainers into generating false explanations, and mislead evaluation methods into considering the false explanations to be of high quality. AXE, our proposed explanation evaluation method, can detect this adversarial fairwashing of explanations with a 100% success rate. Unlike prior explanation evaluation strategies such as those based on model sensitivity or ground truth comparison, AXE can determine when protected attributes are used to make predictions.
Abstract:Large language models excel across diverse domains, yet their deployment in healthcare, legal systems, and autonomous decision-making remains limited by incomplete understanding of their internal mechanisms. As these models integrate into high-stakes systems, understanding how they encode capabilities has become fundamental to interpretability research. Traditional approaches identify important modules through gradient attribution or activation analysis, assuming specific capabilities map to specific components. However, this oversimplifies neural computation: modules may contribute to multiple capabilities simultaneously, while single capabilities may distribute across multiple modules. These coarse-grained analyses fail to capture fine-grained, distributed capability encoding. We present SCALPEL (Selective Capability Ablation via Low-rank Parameter Editing for Large language models), a framework representing capabilities as low-rank parameter subspaces rather than discrete modules. Our key insight is that capabilities can be characterized by low-rank modifications distributed across layers and modules, enabling precise capability removal without affecting others. By training LoRA adapters to reduce distinguishing correct from incorrect answers while preserving general language modeling quality, SCALPEL identifies low-rank representations responsible for particular capabilities while remaining disentangled from others. Experiments across diverse capability and linguistic tasks from BLiMP demonstrate that SCALPEL successfully removes target capabilities while preserving general capabilities, providing fine-grained insights into capability distribution across parameter space. Results reveal that capabilities exhibit low-rank structure and can be selectively ablated through targeted parameter-space interventions, offering nuanced understanding of capability encoding in LLMs.
Abstract:We address the problem of fair classification in settings where data is scarce and unbalanced across demographic groups. Such low-data regimes are common in domains like medical imaging, where false negatives can have fatal consequences. We propose a novel approach \emph{OxEnsemble} for efficiently training ensembles and enforcing fairness in these low-data regimes. Unlike other approaches, we aggregate predictions across ensemble members, each trained to satisfy fairness constraints. By construction, \emph{OxEnsemble} is both data-efficient, carefully reusing held-out data to enforce fairness reliably, and compute-efficient, requiring little more compute than used to fine-tune or evaluate an existing model. We validate this approach with new theoretical guarantees. Experimentally, our approach yields more consistent outcomes and stronger fairness-accuracy trade-offs than existing methods across multiple challenging medical imaging classification datasets.
Abstract:Large language models have achieved remarkable success but remain largely black boxes with poorly understood internal mechanisms. To address this limitation, many researchers have proposed various interpretability methods including mechanistic analysis, probing classifiers, and activation visualization, each providing valuable insights from different perspectives. Building upon this rich landscape of complementary approaches, we introduce CAST (Compositional Analysis via Spectral Tracking), a probe-free framework that contributes a novel perspective by analyzing transformer layer functions through direct transformation matrix estimation and comprehensive spectral analysis. CAST offers complementary insights to existing methods by estimating the realized transformation matrices for each layer using Moore-Penrose pseudoinverse and applying spectral analysis with six interpretable metrics characterizing layer behavior. Our analysis reveals distinct behaviors between encoder-only and decoder-only models, with decoder models exhibiting compression-expansion cycles while encoder models maintain consistent high-rank processing. Kernel analysis further demonstrates functional relationship patterns between layers, with CKA similarity matrices clearly partitioning layers into three phases: feature extraction, compression, and specialization.
Abstract:There can be many competing and contradictory explanations for a single model prediction, making it difficult to select which one to use. Current explanation evaluation frameworks measure quality by comparing against ideal "ground-truth" explanations, or by verifying model sensitivity to important inputs. We outline the limitations of these approaches, and propose three desirable principles to ground the future development of explanation evaluation strategies for local feature importance explanations. We propose a ground-truth Agnostic eXplanation Evaluation framework (AXE) for evaluating and comparing model explanations that satisfies these principles. Unlike prior approaches, AXE does not require access to ideal ground-truth explanations for comparison, or rely on model sensitivity - providing an independent measure of explanation quality. We verify AXE by comparing with baselines, and show how it can be used to detect explanation fairwashing. Our code is available at https://github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth.
Abstract:Vehicle re-identification (Re-ID) is a crucial task in intelligent transportation systems (ITS), aimed at retrieving and matching the same vehicle across different surveillance cameras. Numerous studies have explored methods to enhance vehicle Re-ID by focusing on semantic enhancement. However, these methods often rely on additional annotated information to enable models to extract effective semantic features, which brings many limitations. In this work, we propose a CLIP-based Semantic Enhancement Network (CLIP-SENet), an end-to-end framework designed to autonomously extract and refine vehicle semantic attributes, facilitating the generation of more robust semantic feature representations. Inspired by zero-shot solutions for downstream tasks presented by large-scale vision-language models, we leverage the powerful cross-modal descriptive capabilities of the CLIP image encoder to initially extract general semantic information. Instead of using a text encoder for semantic alignment, we design an adaptive fine-grained enhancement module (AFEM) to adaptively enhance this general semantic information at a fine-grained level to obtain robust semantic feature representations. These features are then fused with common Re-ID appearance features to further refine the distinctions between vehicles. Our comprehensive evaluation on three benchmark datasets demonstrates the effectiveness of CLIP-SENet. Our approach achieves new state-of-the-art performance, with 92.9% mAP and 98.7% Rank-1 on VeRi-776 dataset, 90.4% Rank-1 and 98.7% Rank-5 on VehicleID dataset, and 89.1% mAP and 97.9% Rank-1 on the more challenging VeRi-Wild dataset.




Abstract:There are a number of diverging hypotheses about the neural text degeneration problem, i.e., generating repetitive and dull loops, which makes this problem both interesting and confusing. In this work, we aim to advance our understanding by presenting a straightforward and fundamental explanation from the data perspective. Our preliminary investigation reveals a strong correlation between the degeneration issue and the presence of repetitions in training data. Subsequent experiments also demonstrate that by selectively dropping out the attention to repetitive words in training data, degeneration can be significantly minimized. Furthermore, our empirical analysis illustrates that prior works addressing the degeneration issue from various standpoints, such as the high-inflow words, the likelihood objective, and the self-reinforcement phenomenon, can be interpreted by one simple explanation. That is, penalizing the repetitions in training data is a common and fundamental factor for their effectiveness. Moreover, our experiments reveal that penalizing the repetitions in training data remains critical even when considering larger model sizes and instruction tuning.




Abstract:Infectious disease outbreaks continue to pose a significant threat to human health and well-being. To improve disease surveillance and understanding of disease spread, several surveillance systems have been developed to monitor daily news alerts and social media. However, existing systems lack thorough epidemiological analysis in relation to corresponding alerts or news, largely due to the scarcity of well-annotated reports data. To address this gap, we introduce the Biomedical Alert News Dataset (BAND), which includes 1,508 samples from existing reported news articles, open emails, and alerts, as well as 30 epidemiology-related questions. These questions necessitate the model's expert reasoning abilities, thereby offering valuable insights into the outbreak of the disease. The BAND dataset brings new challenges to the NLP world, requiring better disguise capability of the content and the ability to infer important information. We provide several benchmark tasks, including Named Entity Recognition (NER), Question Answering (QA), and Event Extraction (EE), to show how existing models are capable of handling these tasks in the epidemiology domain. To the best of our knowledge, the BAND corpus is the largest corpus of well-annotated biomedical outbreak alert news with elaborately designed questions, making it a valuable resource for epidemiologists and NLP researchers alike.




Abstract:Biomedical named entity recognition is one of the core tasks in biomedical natural language processing (BioNLP). To tackle this task, numerous supervised/distantly supervised approaches have been proposed. Despite their remarkable success, these approaches inescapably demand laborious human effort. To alleviate the need of human effort, dictionary-based approaches have been proposed to extract named entities simply based on a given dictionary. However, one downside of existing dictionary-based approaches is that they are challenged to identify concept synonyms that are not listed in the given dictionary, which we refer as the synonym generalization problem. In this study, we propose a novel Synonym Generalization (SynGen) framework that recognizes the biomedical concepts contained in the input text using span-based predictions. In particular, SynGen introduces two regularization terms, namely, (1) a synonym distance regularizer; and (2) a noise perturbation regularizer, to minimize the synonym generalization error. To demonstrate the effectiveness of our approach, we provide a theoretical analysis of the bound of synonym generalization error. We extensively evaluate our approach on a wide range of benchmarks and the results verify that SynGen outperforms previous dictionary-based models by notable margins. Lastly, we provide a detailed analysis to further reveal the merits and inner-workings of our approach.




Abstract:The sequence-to-sequence (seq2seq) task aims at generating the target sequence based on the given input source sequence. Traditionally, most of the seq2seq task is resolved by the Encoder-Decoder framework which requires an encoder to encode the source sequence and a decoder to generate the target text. Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task. Despite the significant advancements in applying language models to the seq2seq task, there is still a lack of thorough analysis on the effectiveness of the decoder-only language model architecture. This paper aims to address this gap by conducting a detailed comparison between the encoder-decoder architecture and the decoder-only language model framework through the analysis of a regularized encoder-decoder structure. This structure is designed to replicate all behaviors in the classical decoder-only language model but has an encoder and a decoder making it easier to be compared with the classical encoder-decoder structure. Based on the analysis, we unveil the attention degeneration problem in the language model, namely, as the generation step number grows, less and less attention is focused on the source sequence. To give a quantitative understanding of this problem, we conduct a theoretical sensitivity analysis of the attention output with respect to the source input. Grounded on our analysis, we propose a novel partial attention language model to solve the attention degeneration problem. Experimental results on machine translation, summarization, and data-to-text generation tasks support our analysis and demonstrate the effectiveness of our proposed model.