Alert button
Picture for Zhi-Hua Zhou

Zhi-Hua Zhou

Alert button

Efficient Methods for Non-stationary Online Learning

Sep 16, 2023
Peng Zhao, Yan-Feng Xie, Lijun Zhang, Zhi-Hua Zhou

Non-stationary online learning has drawn much attention in recent years. In particular, dynamic regret and adaptive regret are proposed as two principled performance measures for online convex optimization in non-stationary environments. To optimize them, a two-layer online ensemble is usually deployed due to the inherent uncertainty of the non-stationarity, in which a group of base-learners are maintained and a meta-algorithm is employed to track the best one on the fly. However, the two-layer structure raises the concern about the computational complexity -- those methods typically maintain $\mathcal{O}(\log T)$ base-learners simultaneously for a $T$-round online game and thus perform multiple projections onto the feasible domain per round, which becomes the computational bottleneck when the domain is complicated. In this paper, we present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $\mathcal{O}(\log T)$ to $1$. Moreover, our obtained algorithms require only one gradient query and one function evaluation at each round. Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial twists on non-stationary online methods. Empirical studies verify our theoretical findings.

* preliminary conference version appeared at NeurIPS 2022; this extended version improves the paper presentation, further investigates the interval dynamic regret, and adds two applications (online non-stochastic control and online PCA) 
Viaarxiv icon

Universal Online Learning with Gradual Variations: A Multi-layer Online Ensemble Approach

Jul 17, 2023
Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou

Figure 1 for Universal Online Learning with Gradual Variations: A Multi-layer Online Ensemble Approach
Figure 2 for Universal Online Learning with Gradual Variations: A Multi-layer Online Ensemble Approach
Figure 3 for Universal Online Learning with Gradual Variations: A Multi-layer Online Ensemble Approach
Figure 4 for Universal Online Learning with Gradual Variations: A Multi-layer Online Ensemble Approach

In this paper, we propose an online convex optimization method with two different levels of adaptivity. On a higher level, our method is agnostic to the specific type and curvature of the loss functions, while at a lower level, it can exploit the niceness of the environments and attain problem-dependent guarantees. To be specific, we obtain $\mathcal{O}(\ln V_T)$, $\mathcal{O}(d \ln V_T)$ and $\hat{\mathcal{O}}(\sqrt{V_T})$ regret bounds for strongly convex, exp-concave and convex loss functions, respectively, where $d$ is the dimension, $V_T$ denotes problem-dependent gradient variations and $\hat{\mathcal{O}}(\cdot)$-notation omits logarithmic factors on $V_T$. Our result finds broad implications and applications. It not only safeguards the worst-case guarantees, but also implies the small-loss bounds in analysis directly. Besides, it draws deep connections with adversarial/stochastic convex optimization and game theory, further validating its practical potential. Our method is based on a multi-layer online ensemble incorporating novel ingredients, including carefully-designed optimism for unifying diverse function types and cascaded corrections for algorithmic stability. Remarkably, despite its multi-layer structure, our algorithm necessitates only one gradient query per round, making it favorable when the gradient evaluation is time-consuming. This is facilitated by a novel regret decomposition equipped with customized surrogate losses.

Viaarxiv icon

Weakly Supervised AUC Optimization: A Unified Partial AUC Approach

May 23, 2023
Zheng Xie, Yu Liu, Hao-Yuan He, Ming Li, Zhi-Hua Zhou

Figure 1 for Weakly Supervised AUC Optimization: A Unified Partial AUC Approach
Figure 2 for Weakly Supervised AUC Optimization: A Unified Partial AUC Approach
Figure 3 for Weakly Supervised AUC Optimization: A Unified Partial AUC Approach
Figure 4 for Weakly Supervised AUC Optimization: A Unified Partial AUC Approach

Since acquiring perfect supervision is usually difficult, real-world machine learning tasks often confront inaccurate, incomplete, or inexact supervision, collectively referred to as weak supervision. In this work, we present WSAUC, a unified framework for weakly supervised AUC optimization problems, which covers noisy label learning, positive-unlabeled learning, multi-instance learning, and semi-supervised learning scenarios. Within the WSAUC framework, we first frame the AUC optimization problems in various weakly supervised scenarios as a common formulation of minimizing the AUC risk on contaminated sets, and demonstrate that the empirical risk minimization problems are consistent with the true AUC. Then, we introduce a new type of partial AUC, specifically, the reversed partial AUC (rpAUC), which serves as a robust training objective for AUC maximization in the presence of contaminated labels. WSAUC offers a universal solution for AUC optimization in various weakly supervised scenarios by maximizing the empirical rpAUC. Theoretical and experimental results under multiple settings support the effectiveness of WSAUC on a range of weakly supervised AUC optimization tasks.

Viaarxiv icon

Stream Efficient Learning

May 03, 2023
Zhi-Hua Zhou

Data in many real-world applications are often accumulated over time, like a stream. In contrast to conventional machine learning studies that focus on learning from a given training data set, learning from data streams cannot ignore the fact that the incoming data stream can be potentially endless with overwhelming size and unknown changes, and it is impractical to assume to have sufficient computational/storage resource such that all received data can be handled in time. Thus, the generalization performance of learning from data streams depends not only on how many data have been received, but also on how many data can be well exploited timely, with resource and rapidity concerns, in addition to the ability of learning algorithm and complexity of the problem. For this purpose, in this article we introduce the notion of machine learning throughput, define Stream Efficient Learning and present a preliminary theoretical framework.

Viaarxiv icon

Revisiting Weighted Strategy for Non-stationary Parametric Bandits

Mar 05, 2023
Jing Wang, Peng Zhao, Zhi-Hua Zhou

Figure 1 for Revisiting Weighted Strategy for Non-stationary Parametric Bandits
Figure 2 for Revisiting Weighted Strategy for Non-stationary Parametric Bandits
Figure 3 for Revisiting Weighted Strategy for Non-stationary Parametric Bandits

Non-stationary parametric bandits have attracted much attention recently. There are three principled ways to deal with non-stationarity, including sliding-window, weighted, and restart strategies. As many non-stationary environments exhibit gradual drifting patterns, the weighted strategy is commonly adopted in real-world applications. However, previous theoretical studies show that its analysis is more involved and the algorithms are either computationally less efficient or statistically suboptimal. This paper revisits the weighted strategy for non-stationary parametric bandits. In linear bandits (LB), we discover that this undesirable feature is due to an inadequate regret analysis, which results in an overly complex algorithm design. We propose a refined analysis framework, which simplifies the derivation and importantly produces a simpler weight-based algorithm that is as efficient as window/restart-based algorithms while retaining the same regret as previous studies. Furthermore, our new framework can be used to improve regret bounds of other parametric bandits, including Generalized Linear Bandits (GLB) and Self-Concordant Bandits (SCB). For example, we develop a simple weighted GLB algorithm with an $\widetilde{O}(k_\mu^{\frac{5}{4}} c_\mu^{-\frac{3}{4}} d^{\frac{3}{4}} P_T^{\frac{1}{4}}T^{\frac{3}{4}})$ regret, improving the $\widetilde{O}(k_\mu^{2} c_\mu^{-1}d^{\frac{9}{10}} P_T^{\frac{1}{5}}T^{\frac{4}{5}})$ bound in prior work, where $k_\mu$ and $c_\mu$ characterize the reward model's nonlinearity, $P_T$ measures the non-stationarity, $d$ and $T$ denote the dimension and time horizon.

Viaarxiv icon

Stochastic Approximation Approaches to Group Distributionally Robust Optimization

Feb 18, 2023
Lijun Zhang, Peng Zhao, Tianbao Yang, Zhi-Hua Zhou

This paper investigates group distributionally robust optimization (GDRO), with the purpose to learn a model that performs well over $m$ different distributions. First, we formulate GDRO as a stochastic convex-concave saddle-point problem, and demonstrate that stochastic mirror descent (SMD), using $m$ samples in each iteration, achieves an $O(m (\log m)/\epsilon^2)$ sample complexity for finding an $\epsilon$-optimal solution, which matches the $\Omega(m/\epsilon^2)$ lower bound up to a logarithmic factor. Then, we make use of techniques from online learning to reduce the number of samples required in each round from $m$ to $1$, keeping the same sample complexity. Specifically, we cast GDRO as a two-players game where one player simply performs SMD and the other executes an online algorithm for non-oblivious multi-armed bandits. Next, we consider a more practical scenario where the number of samples that can be drawn from each distribution is different, and propose a novel formulation of weighted DRO, which allows us to derive distribution-dependent convergence rates. Denote by $n_i$ the sample budget for the $i$-th distribution, and assume $n_1 \geq n_2 \geq \cdots \geq n_m$. In the first approach, we incorporate non-uniform sampling into SMD such that the sample budget is satisfied in expectation, and prove the excess risk of the $i$-th distribution decreases at an $O(\sqrt{n_1 \log m}/n_i)$ rate. In the second approach, we use mini-batches to meet the budget exactly and also reduce the variance in stochastic gradients, and then leverage stochastic mirror-prox algorithm, which can exploit small variances, to optimize a carefully designed weighted DRO problem. Under appropriate conditions, it attains an $O((\log m)/\sqrt{n_i})$ convergence rate, which almost matches the optimal $O(\sqrt{1/n_i})$ rate of only learning from the $i$-th distribution with $n_i$ samples.

Viaarxiv icon

Learnware: Small Models Do Big

Oct 07, 2022
Zhi-Hua Zhou, Zhi-Hao Tan

Figure 1 for Learnware: Small Models Do Big
Figure 2 for Learnware: Small Models Do Big
Figure 3 for Learnware: Small Models Do Big
Figure 4 for Learnware: Small Models Do Big

There are complaints about current machine learning techniques such as the requirement of a huge amount of training data and proficient training skills, the difficulty of continual learning, the risk of catastrophic forgetting, the leaking of data privacy/proprietary, etc. Most research efforts have been focusing on one of those concerned issues separately, paying less attention to the fact that most issues are entangled in practice. The prevailing big model paradigm, which has achieved impressive results in natural language processing and computer vision applications, has not yet addressed those issues, whereas becoming a serious source of carbon emissions. This article offers an overview of the learnware paradigm, which attempts to enable users not need to build machine learning models from scratch, with the hope of reusing small models to do things even beyond their original purposes, where the key ingredient is the specification which enables a trained model to be adequately identified to reuse according to the requirement of future users who know nothing about the model in advance.

Viaarxiv icon

Dynamic Regret of Online Markov Decision Processes

Aug 26, 2022
Peng Zhao, Long-Fei Li, Zhi-Hua Zhou

Figure 1 for Dynamic Regret of Online Markov Decision Processes
Figure 2 for Dynamic Regret of Online Markov Decision Processes
Figure 3 for Dynamic Regret of Online Markov Decision Processes
Figure 4 for Dynamic Regret of Online Markov Decision Processes

We investigate online Markov Decision Processes (MDPs) with adversarially changing loss functions and known transitions. We choose dynamic regret as the performance measure, defined as the performance difference between the learner and any sequence of feasible changing policies. The measure is strictly stronger than the standard static regret that benchmarks the learner's performance with a fixed compared policy. We consider three foundational models of online MDPs, including episodic loop-free Stochastic Shortest Path (SSP), episodic SSP, and infinite-horizon MDPs. For these three models, we propose novel online ensemble algorithms and establish their dynamic regret guarantees respectively, in which the results for episodic (loop-free) SSP are provably minimax optimal in terms of time horizon and certain non-stationarity measure. Furthermore, when the online environments encountered by the learner are predictable, we design improved algorithms and achieve better dynamic regret bounds for the episodic (loop-free) SSP; and moreover, we demonstrate impossibility results for the infinite-horizon MDPs.

Viaarxiv icon

Adapting to Online Label Shift with Provable Guarantees

Jul 05, 2022
Yong Bai, Yu-Jie Zhang, Peng Zhao, Masashi Sugiyama, Zhi-Hua Zhou

Figure 1 for Adapting to Online Label Shift with Provable Guarantees
Figure 2 for Adapting to Online Label Shift with Provable Guarantees
Figure 3 for Adapting to Online Label Shift with Provable Guarantees
Figure 4 for Adapting to Online Label Shift with Provable Guarantees

The standard supervised learning paradigm works effectively when training data shares the same distribution as the upcoming testing samples. However, this assumption is often violated in real-world applications, especially when testing data appear in an online fashion. In this paper, we formulate and investigate the problem of online label shift (OLaS): the learner trains an initial model from the labeled offline data and then deploys it to an unlabeled online environment where the underlying label distribution changes over time but the label-conditional density does not. The non-stationarity nature and the lack of supervision make the problem challenging to be tackled. To address the difficulty, we construct a new unbiased risk estimator that utilizes the unlabeled data, which exhibits many benign properties albeit with potential non-convexity. Building upon that, we propose novel online ensemble algorithms to deal with the non-stationarity of the environments. Our approach enjoys optimal dynamic regret, indicating that the performance is competitive with a clairvoyant who knows the online environments in hindsight and then chooses the best decision for each round. The obtained dynamic regret bound scales with the intensity and pattern of label distribution shift, hence exhibiting the adaptivity in the OLaS problem. Extensive experiments are conducted to validate the effectiveness and support our theoretical findings.

Viaarxiv icon

Open Environment Machine Learning

Jun 01, 2022
Zhi-Hua Zhou

Figure 1 for Open Environment Machine Learning
Figure 2 for Open Environment Machine Learning
Figure 3 for Open Environment Machine Learning
Figure 4 for Open Environment Machine Learning

Conventional machine learning studies generally assume close world scenarios where important factors of the learning process hold invariant. With the great success of machine learning, nowadays, more and more practical tasks, particularly those involving open world scenarios where important factors are subject to change, called open environment machine learning (Open ML) in this article, are present to the community. Evidently it is a grand challenge for machine learning turning from close world to open world. It becomes even more challenging since, in various big data tasks, data are usually accumulated with time, like streams, while it is hard to train the machine learning model after collecting all data as in conventional studies. This article briefly introduces some advances in this line of research, focusing on techniques concerning emerging new classes, decremental/incremental features, changing data distributions, varied learning objectives, and discusses some theoretical issues.

Viaarxiv icon