Abstract:In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
Abstract:Large language models are increasingly deployed as research agents for deep search and long-horizon information seeking, yet their performance often degrades as interaction histories grow. This degradation, known as context rot, reflects a failure to maintain coherent and task-relevant internal states over extended reasoning horizons. Existing approaches primarily manage context through raw accumulation or passive summarization, treating it as a static artifact and allowing early errors or misplaced emphasis to persist. Motivated by this perspective, we propose ARC, which is the first framework to systematically formulate context management as an active, reflection-driven process that treats context as a dynamic internal reasoning state during execution. ARC operationalizes this view through reflection-driven monitoring and revision, allowing agents to actively reorganize their working context when misalignment or degradation is detected. Experiments on challenging long-horizon information-seeking benchmarks show that ARC consistently outperforms passive context compression methods, achieving up to an 11% absolute improvement in accuracy on BrowseComp-ZH with Qwen2.5-32B-Instruct.
Abstract:Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents.