Abstract:Anatomical changes during intensity-modulated proton therapy (IMPT) for head-and-neck cancer (HNC) can shift Bragg peaks, risking tumor underdosing and organ-at-risk overdosing. As a result, treatment replanning is often required to maintain clinically acceptable treatment quality. However, current manual replanning processes are resource-intensive and time-consuming. We propose a patient-specific deep reinforcement learning (DRL) framework for automated IMPT replanning, with a reward-shaping mechanism based on a $150$-point plan quality score addressing competing clinical objectives. We formulate the planning process as an RL problem where agents learn control policies to adjust optimization priorities, maximizing plan quality. Unlike population-based approaches, our framework trains personalized agents for each patient using their planning CT (Computed Tomography) and augmented anatomies simulating anatomical changes (tumor progression and regression). This patient-specific approach leverages anatomical similarities throughout treatment, enabling effective plan adaptation. We implemented two DRL algorithms, Deep Q-Network and Proximal Policy Optimization, using dose-volume histograms (DVHs) as state representations and a $22$-dimensional action space of priority adjustments. Evaluation on five HNC patients using actual replanning CT data showed both DRL agents improved initial plan scores from $120.63 \pm 21.40$ to $139.78 \pm 6.84$ (DQN) and $142.74 \pm 5.16$ (PPO), surpassing manual replans generated by a human planner ($137.20 \pm 5.58$). Clinical validation confirms that improvements translate to better tumor coverage and OAR sparing across diverse anatomical changes. This work demonstrates DRL's potential in addressing geometric and dosimetric complexities of adaptive proton therapy, offering efficient offline adaptation solutions and advancing online adaptive proton therapy.
Abstract:Recent research has shown that multi-task pre-training greatly improves the model's robustness and transfer ability, which is crucial for building a high-quality dialog system. However, most previous works on multi-task pre-training rely heavily on human-defined input format or prompt, which is not optimal in quality and quantity. In this work, we propose to use Task-based Automatic Prompt generation (TAP) to automatically generate high-quality prompts. Using the high-quality prompts generated, we scale the corpus of the pre-trained conversation model to 122 datasets from 15 dialog-related tasks, resulting in Universal Pre-trained Conversation Model (UniPCM), a powerful foundation model for various conversational tasks and different dialog systems. Extensive experiments have shown that UniPCM is robust to input prompts and capable of various dialog-related tasks. Moreover, UniPCM has strong transfer ability and excels at low resource scenarios, achieving SOTA results on 9 different datasets ranging from task-oriented dialog to open-domain conversation. Furthermore, we are amazed to find that TAP can generate prompts on par with those collected with crowdsourcing. The code is released with the paper.