https://github.com/xiaoxiaxusummer/PASS_Discrete
Pinching-antenna systems (PASS) improve wireless links by configuring the locations of activated pinching antennas along dielectric waveguides, namely pinching beamforming. In this paper, a novel adjustable power radiation model is proposed for PASS, where power radiation ratios of pinching antennas can be flexibly controlled by tuning the spacing between pinching antennas and waveguides. A closed-form pinching antenna spacing arrangement strategy is derived to achieve the commonly assumed equal-power radiation. Based on this, a practical PASS framework relying on discrete activation is considered, where pinching antennas can only be activated among a set of predefined locations. A transmit power minimization problem is formulated, which jointly optimizes the transmit beamforming, pinching beamforming, and the numbers of activated pinching antennas, subject to each user's minimum rate requirement. (1) To solve the resulting highly coupled mixed-integer nonlinear programming (MINLP) problem, branch-and-bound (BnB)-based algorithms are proposed for both single-user and multi-user scenarios, which is guaranteed to converge to globally optimal solutions. (2) A low-complexity many-to-many matching algorithm is further developed. Combined with the Karush-Kuhn-Tucker (KKT) theory, locally optimal and pairwise-stable solutions are obtained within polynomial-time complexity. Simulation results demonstrate that: (i) PASS significantly outperforms conventional multi-antenna architectures, particularly when the number of users and the spatial range increase; and (ii) The proposed matching-based algorithm achieves near-optimal performance, resulting in only a slight performance loss while significantly reducing computational overheads. Code is available at