Exploring a substantial amount of unlabeled data, semi-supervised learning (SSL) boosts the recognition performance when only a limited number of labels are provided. However, traditional methods assume that the data distribution is class-balanced, which is difficult to achieve in reality due to the long-tailed nature of real-world data. While the data imbalance problem has been extensively studied in supervised learning (SL) paradigms, directly transferring existing approaches to SSL is nontrivial, as prior knowledge about data distribution remains unknown in SSL. In light of this, we propose Balanced Memory Bank (BMB), a semi-supervised framework for long-tailed recognition. The core of BMB is an online-updated memory bank that caches historical features with their corresponding pseudo labels, and the memory is also carefully maintained to ensure the data therein are class-rebalanced. Additionally, an adaptive weighting module is introduced to work jointly with the memory bank so as to further re-calibrate the biased training process. We conduct experiments on multiple datasets and demonstrate, among other things, that BMB surpasses state-of-the-art approaches by clear margins, for example 8.2$\%$ on the 1$\%$ labeled subset of ImageNet127 (with a resolution of 64$\times$64) and 4.3$\%$ on the 50$\%$ labeled subset of ImageNet-LT.
Contrastive Language-Image Pretraining (CLIP) has demonstrated impressive zero-shot learning abilities for image understanding, yet limited effort has been made to investigate CLIP for zero-shot video recognition. We introduce Open-VCLIP, a simple yet effective approach that transforms CLIP into strong zero-shot video classifiers that can recognize unseen actions and events at test time. Our framework extends CLIP with minimal modifications to model spatial-temporal relationships in videos, making it a specialized video classifier, while striving for generalization. We formally show that training an Open-VCLIP is equivalent to continual learning with zero historical data. To address this problem, we propose Interpolated Weight Optimization, which utilizes the benefit of weight interpolation in both training and test time. We evaluate our method on three popular and challenging action recognition datasets following various zero-shot evaluation protocols and we demonstrate our approach outperforms state-of-the-art methods by clear margins. In particular, we achieve 87.9%, 58.3%, 81.1% zero-shot accuracy on UCF, HMDB and Kinetics-600 respectively, outperforming state-of-the-art methods by 8.3%, 7.8% and 12.2%.
We study the training of Vision Transformers for semi-supervised image classification. Transformers have recently demonstrated impressive performance on a multitude of supervised learning tasks. Surprisingly, we find Vision Transformers perform poorly on a semi-supervised ImageNet setting. In contrast, Convolutional Neural Networks (CNNs) achieve superior results in small labeled data regime. Further investigation reveals that the reason is CNNs have strong spatial inductive bias. Inspired by this observation, we introduce a joint semi-supervised learning framework, Semiformer, which contains a Transformer branch, a Convolutional branch and a carefully designed fusion module for knowledge sharing between the branches. The Convolutional branch is trained on the limited supervised data and generates pseudo labels to supervise the training of the transformer branch on unlabeled data. Extensive experiments on ImageNet demonstrate that Semiformer achieves 75.5\% top-1 accuracy, outperforming the state-of-the-art. In addition, we show Semiformer is a general framework which is compatible with most modern Transformer and Convolutional neural architectures.
There is a growing trend in placing video advertisements on social platforms for online marketing, which demands automatic approaches to understand the contents of advertisements effectively. Taking the 2021 TAAC competition as an opportunity, we developed a multimodal system to improve the ability of structured analysis of advertising video content. In our framework, we break down the video structuring analysis problem into two tasks, i.e., scene segmentation and multi-modal tagging. In scene segmentation, we build upon a temporal convolution module for temporal modeling to predict whether adjacent frames belong to the same scene. In multi-modal tagging, we first compute clip-level visual features by aggregating frame-level features with NeXt-SoftDBoF. The visual features are further complemented with textual features that are derived using a global-local attention mechanism to extract useful information from OCR (Optical Character Recognition) and ASR (Audio Speech Recognition) outputs. Our solution achieved a score of 0.2470 measured in consideration of localization and prediction accuracy, ranking fourth in the 2021 TAAC final leaderboard.
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distances across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Label distributions in real-world are oftentimes long-tailed and imbalanced, resulting in biased models towards dominant labels. While long-tailed recognition has been extensively studied for image classification tasks, limited effort has been made for video domain. In this paper, we introduce VideoLT, a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. Our VideoLT contains 256,218 untrimmed videos, annotated into 1,004 classes with a long-tailed distribution. Through extensive studies, we demonstrate that state-of-the-art methods used for long-tailed image recognition do not perform well in the video domain due to the additional temporal dimension in video data. This motivates us to propose FrameStack, a simple yet effective method for long-tailed video recognition task. In particular, FrameStack performs sampling at the frame-level in order to balance class distributions, and the sampling ratio is dynamically determined using knowledge derived from the network during training. Experimental results demonstrate that FrameStack can improve classification performance without sacrificing overall accuracy.
Videos are multimodal in nature. Conventional video recognition pipelines typically fuse multimodal features for improved performance. However, this is not only computationally expensive but also neglects the fact that different videos rely on different modalities for predictions. This paper introduces Hierarchical Modality Selection (HMS), a simple yet efficient multimodal learning framework for efficient video recognition. HMS operates on a low-cost modality, i.e., audio clues, by default, and dynamically decides on-the-fly whether to use computationally-expensive modalities, including appearance and motion clues, on a per-input basis. This is achieved by the collaboration of three LSTMs that are organized in a hierarchical manner. In particular, LSTMs that operate on high-cost modalities contain a gating module, which takes as inputs lower-level features and historical information to adaptively determine whether to activate its corresponding modality; otherwise it simply reuses historical information. We conduct extensive experiments on two large-scale video benchmarks, FCVID and ActivityNet, and the results demonstrate the proposed approach can effectively explore multimodal information for improved classification performance while requiring much less computation.
Videos are multimodal in nature. Conventional video recognition pipelines typically fuse multimodal features for improved performance. However, this is not only computationally expensive but also neglects the fact that different videos rely on different modalities for predictions. This paper introduces Hierarchical Modality Selection (HMS), a simple yet efficient multimodal learning framework for efficient video recognition. HMS operates on a low-cost modality, i.e., audio clues, by default, and dynamically decides on-the-fly whether to use computationally-expensive modalities, including appearance and motion clues, on a per-input basis. This is achieved by the collaboration of three LSTMs that are organized in a hierarchical manner. In particular, LSTMs that operate on high-cost modalities contain a gating module, which takes as inputs lower-level features and historical information to adaptively determine whether to activate its corresponding modality; otherwise it simply reuses historical information. We conduct extensive experiments on two large-scale video benchmarks, FCVID and ActivityNet, and the results demonstrate the proposed approach can effectively explore multimodal information for improved classification performance while requiring much less computation.
Evaluating the robustness of a defense model is a challenging task in adversarial robustness research. Obfuscated gradients, a type of gradient masking, have previously been found to exist in many defense methods and cause a false signal of robustness. In this paper, we identify a more subtle situation called \emph{Imbalanced Gradients} that can also cause overestimated adversarial robustness. The phenomenon of imbalanced gradients occurs when the gradient of one term of the margin loss dominates and pushes the attack towards to a suboptimal direction. To exploit imbalanced gradients, we formulate a \emph{Margin Decomposition (MD)} attack that decomposes a margin loss into individual terms and then explores the attackability of these terms separately via a two-stage process. We examine 12 state-of-the-art defense models, and find that models exploiting label smoothing easily cause imbalanced gradients, and on which our MD attacks can decrease their PGD robustness (evaluated by PGD attack) by over 23%. For 6 out of the 12 defenses, our attack can reduce their PGD robustness by at least 9%. The results suggest that imbalanced gradients need to be carefully addressed for more reliable adversarial robustness.