Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Department of Radiology, Severance Hospital, South Korea
Abstract:Mixture of Experts (MoE) models with conditional execution of sparsely activated layers have enabled training models with a much larger number of parameters. As a result, these models have achieved significantly better quality on various natural language processing tasks including machine translation. However, it remains challenging to deploy such models in real-life scenarios due to the large memory requirements and inefficient inference. In this work, we introduce a highly efficient inference framework with several optimization approaches to accelerate the computation of sparse models and cut down the memory consumption significantly. While we achieve up to 26x speed-up in terms of throughput, we also reduce the model size almost to one eighth of the original 32-bit float model by quantizing expert weights into 4-bit integers. As a result, we are able to deploy 136x larger models with 27% less cost and significantly better quality compared to the existing solutions. This enables a paradigm shift in deploying large scale multilingual MoE transformers models replacing the traditional practice of distilling teacher models into dozens of smaller models per language or task.
Abstract:Neural architecture search (NAS) has demonstrated promising results on identifying efficient Transformer architectures which outperform manually designed ones for natural language tasks like neural machine translation (NMT). Existing NAS methods operate on a space of dense architectures, where all of the sub-architecture weights are activated for every input. Motivated by the recent advances in sparsely activated models like the Mixture-of-Experts (MoE) model, we introduce sparse architectures with conditional computation into the NAS search space. Given this expressive search space which subsumes prior densely activated architectures, we develop a new framework AutoMoE to search for efficient sparsely activated sub-Transformers. AutoMoE-generated sparse models obtain (i) 3x FLOPs reduction over manually designed dense Transformers and (ii) 23% FLOPs reduction over state-of-the-art NAS-generated dense sub-Transformers with parity in BLEU score on benchmark datasets for NMT. AutoMoE consists of three training phases: (a) Heterogeneous search space design with dense and sparsely activated Transformer modules (e.g., how many experts? where to place them? what should be their sizes?); (b) SuperNet training that jointly trains several subnetworks sampled from the large search space by weight-sharing; (c) Evolutionary search for the architecture with the optimal trade-off between task performance and computational constraint like FLOPs and latency. AutoMoE code, data and trained models are available at https://github.com/microsoft/AutoMoE.
Abstract:Multilingual Neural Machine Translation has been showing great success using transformer models. Deploying these models is challenging because they usually require large vocabulary (vocab) sizes for various languages. This limits the speed of predicting the output tokens in the last vocab projection layer. To alleviate these challenges, this paper proposes a fast vocabulary projection method via clustering which can be used for multilingual transformers on GPUs. First, we offline split the vocab search space into disjoint clusters given the hidden context vector of the decoder output, which results in much smaller vocab columns for vocab projection. Second, at inference time, the proposed method predicts the clusters and candidate active tokens for hidden context vectors at the vocab projection. This paper also includes analysis of different ways of building these clusters in multilingual settings. Our results show end-to-end speed gains in float16 GPU inference up to 25% while maintaining the BLEU score and slightly increasing memory cost. The proposed method speeds up the vocab projection step itself by up to 2.6x. We also conduct an extensive human evaluation to verify the proposed method preserves the quality of the translations from the original model.
Abstract:Sparsely activated transformers, such as Mixture of Experts (MoE), have received great interest due to their outrageous scaling capability which enables dramatical increases in model size without significant increases in computational cost. To achieve this, MoE models replace the feedforward sub-layer with Mixture-of-Experts sub-layer in transformers and use a gating network to route each token to its assigned experts. Since the common practice for efficient training of such models requires distributing experts and tokens across different machines, this routing strategy often incurs huge cross-machine communication cost because tokens and their assigned experts likely reside in different machines. In this paper, we propose \emph{Gating Dropout}, which allows tokens to ignore the gating network and stay at their local machines, thus reducing the cross-machine communication. Similar to traditional dropout, we also show that Gating Dropout has a regularization effect during training, resulting in improved generalization performance. We validate the effectiveness of Gating Dropout on multilingual machine translation tasks. Our results demonstrate that Gating Dropout improves a state-of-the-art MoE model with faster wall-clock time convergence rates and better BLEU scores for a variety of model sizes and datasets.
Abstract:Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can easily scale to have outrageously large amounts of parameters without significant increase in computational cost. However, SAMs are reported to be parameter inefficient such that larger models do not always lead to better performance. While most on-going research focuses on improving SAMs models by exploring methods of routing inputs to experts, our analysis reveals that such research might not lead to the solution we expect, i.e., the commonly-used routing methods based on gating mechanisms do not work better than randomly routing inputs to experts. In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts). Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference. THOR models are trained using a consistency regularized loss, where experts learn not only from training data but also from other experts as teachers, such that all the experts make consistent predictions. We validate the effectiveness of THOR on machine translation tasks. Results show that THOR models are more parameter efficient in that they significantly outperform the Transformer and MoE models across various settings. For example, in multilingual translation, THOR outperforms the Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as that of a state-of-the-art MoE model that is 18 times larger. Our code is publicly available at: https://github.com/microsoft/Stochastic-Mixture-of-Experts.
Abstract:The Mixture of Experts (MoE) models are an emerging class of sparsely activated deep learning models that have sublinear compute costs with respect to their parameters. In contrast with dense models, the sparse architecture of MoE offers opportunities for drastically growing model size with significant accuracy gain while consuming much lower compute budget. However, supporting large scale MoE training also has its own set of system and modeling challenges. To overcome the challenges and embrace the opportunities of MoE, we first develop a system capable of scaling MoE models efficiently to trillions of parameters. It combines multi-dimensional parallelism and heterogeneous memory technologies harmoniously with MoE to empower 8x larger models on the same hardware compared with existing work. Besides boosting system efficiency, we also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve inference time efficiency. By combining the efficient system and training methods, we are able to significantly scale up large multitask multilingual models for language generation which results in a great improvement in model accuracy. A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks. The system support of efficient MoE training has been implemented and open-sourced with the DeepSpeed library.
Abstract:Transformer-based models are the state-of-the-art for Natural Language Understanding (NLU) applications. Models are getting bigger and better on various tasks. However, Transformer models remain computationally challenging since they are not efficient at inference-time compared to traditional approaches. In this paper, we present FastFormers, a set of recipes to achieve efficient inference-time performance for Transformer-based models on various NLU tasks. We show how carefully utilizing knowledge distillation, structured pruning and numerical optimization can lead to drastic improvements on inference efficiency. We provide effective recipes that can guide practitioners to choose the best settings for various NLU tasks and pretrained models. Applying the proposed recipes to the SuperGLUE benchmark, we achieve from 9.8x up to 233.9x speed-up compared to out-of-the-box models on CPU. On GPU, we also achieve up to 12.4x speed-up with the presented methods. We show that FastFormers can drastically reduce cost of serving 100 million requests from 4,223 USD to just 18 USD on an Azure F16s_v2 instance. This translates to a sustainable runtime by reducing energy consumption 6.9x - 125.8x according to the metrics used in the SustaiNLP 2020 shared task.
Abstract:Background: The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools, e.g. image segmentation methods, are employed to derive quantitative measures or biomarkers for later analyses. Manual inspection and visual QC of each segmentation isn't feasible at large scale. However, it's important to be able to automatically detect when a segmentation method fails so as to avoid inclusion of wrong measurements into subsequent analyses which could lead to incorrect conclusions. Methods: To overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4,800 cardiac magnetic resonance scans. We then apply our method to a large cohort of 7,250 cardiac MRI on which we have performed manual QC. Results: We report results used for predicting segmentation quality metrics including Dice Similarity Coefficient (DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy for classifying low and high quality segmentations using predicted DSC scores. As further validation we show high correlation between real and predicted scores and 95% classification accuracy on 4,800 scans for which manual segmentations were available. We mimic real-world application of the method on 7,250 cardiac MRI where we show good agreement between predicted quality metrics and manual visual QC scores. Conclusions: We show that RCA has the potential for accurate and fully automatic segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging Study.
Abstract:Recent advances in deep learning based image segmentation methods have enabled real-time performance with human-level accuracy. However, occasionally even the best method fails due to low image quality, artifacts or unexpected behaviour of black box algorithms. Being able to predict segmentation quality in the absence of ground truth is of paramount importance in clinical practice, but also in large-scale studies to avoid the inclusion of invalid data in subsequent analysis. In this work, we propose two approaches of real-time automated quality control for cardiovascular MR segmentations using deep learning. First, we train a neural network on 12,880 samples to predict Dice Similarity Coefficients (DSC) on a per-case basis. We report a mean average error (MAE) of 0.03 on 1,610 test samples and 97% binary classification accuracy for separating low and high quality segmentations. Secondly, in the scenario where no manually annotated data is available, we train a network to predict DSC scores from estimated quality obtained via a reverse testing strategy. We report an MAE=0.14 and 91% binary classification accuracy for this case. Predictions are obtained in real-time which, when combined with real-time segmentation methods, enables instant feedback on whether an acquired scan is analysable while the patient is still in the scanner. This further enables new applications of optimising image acquisition towards best possible analysis results.
Abstract:Cardiovascular magnetic resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images. Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV). By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance on par with human experts in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images.