University of British Columbia
Abstract:Arabic is a highly diglossic language where most daily communication occurs in regional dialects rather than Modern Standard Arabic. Despite this, machine translation (MT) systems often generalize poorly to dialectal input, limiting their utility for millions of speakers. We introduce \textbf{Alexandria}, a large-scale, community-driven, human-translated dataset designed to bridge this gap. Alexandria covers 13 Arab countries and 11 high-impact domains, including health, education, and agriculture. Unlike previous resources, Alexandria provides unprecedented granularity by associating contributions with city-of-origin metadata, capturing authentic local varieties beyond coarse regional labels. The dataset consists of multi-turn conversational scenarios annotated with speaker-addressee gender configurations, enabling the study of gender-conditioned variation in dialectal use. Comprising 107K total samples, Alexandria serves as both a training resource and a rigorous benchmark for evaluating MT and Large Language Models (LLMs). Our automatic and human evaluation of Arabic-aware LLMs benchmarks current capabilities in translating across diverse Arabic dialects and sub-dialects, while exposing significant persistent challenges.
Abstract:Language Identification (LID) is the task of determining the language of a given text and is a fundamental preprocessing step that affects the reliability of downstream NLP applications. While recent work has expanded LID coverage for African languages, existing approaches remain limited in (i) the number of supported languages and (ii) their ability to make fine-grained distinctions among closely related varieties. We introduce AfroScope, a unified framework for African LID that includes AfroScope-Data, a dataset covering 713 African languages, and AfroScope-Models, a suite of strong LID models with broad language coverage. To better distinguish highly confusable languages, we propose a hierarchical classification approach that leverages Mirror-Serengeti, a specialized embedding model targeting 29 closely related or geographically proximate languages. This approach improves macro F1 by 4.55 on this confusable subset compared to our best base model. Finally, we analyze cross linguistic transfer and domain effects, offering guidance for building robust African LID systems. We position African LID as an enabling technology for large scale measurement of Africas linguistic landscape in digital text and release AfroScope-Data and AfroScope-Models publicly.
Abstract:Dialectal Arabic (DA) speech data vary widely in domain coverage, dialect labeling practices, and recording conditions, complicating cross-dataset comparison and model evaluation. To characterize this landscape, we conduct a computational analysis of linguistic ``dialectness'' alongside objective proxies of audio quality on the training splits of widely used DA corpora. We find substantial heterogeneity both in acoustic conditions and in the strength and consistency of dialectal signals across datasets, underscoring the need for standardized characterization beyond coarse labels. To reduce fragmentation and support reproducible evaluation, we introduce Arab Voices, a standardized framework for DA ASR. Arab Voices provides unified access to 31 datasets spanning 14 dialects, with harmonized metadata and evaluation utilities. We further benchmark a range of recent ASR systems, establishing strong baselines for modern DA ASR.
Abstract:Existing temporal QA benchmarks focus on simple fact-seeking queries from news corpora, while reasoning-intensive retrieval benchmarks lack temporal grounding. However, real-world information needs often require reasoning about temporal evolution and synthesizing evidence across time periods. We introduce TEMPO, the first benchmark combining temporal reasoning with reasoning-intensive retrieval across 13 domains. TEMPO features: (1) 1,730 complex queries requiring deep temporal reasoning such as tracking changes, identifying trends, or comparing cross-period evidence; (2) step-wise retrieval planning with 3,976 decomposed steps and gold documents mapped to each step for multi-hop evaluation; and (3) novel temporal metrics including Temporal Coverage@k and Temporal Precision@k measuring whether results span required time periods. Evaluation of 12 retrieval systems reveals substantial challenges: the best model (DiVeR) achieves only 32.0 NDCG@10 and 71.4\% Temporal Coverage@10, demonstrating difficulty in retrieving temporally complete evidence. We believe TEMPO provides a challenging benchmark for improving temporal reasoning in retrieval and RAG systems. Our code and data are available at https://github.com/tempo-bench/Tempo. See also our official website: https://tempo-bench.github.io/.




Abstract:Chain-of-Thought (CoT) prompting has significantly advanced task-solving capabilities in natural language processing with large language models. Unlike standard prompting, CoT encourages the model to generate intermediate reasoning steps, non-answer tokens, that help guide the model toward more accurate final outputs. These intermediate steps enable more complex reasoning processes such as error correction, memory management, future planning, and self-reflection. However, applying CoT to non-natural language domains, such as protein and RNA language models, is not yet possible, primarily due to the limited expressiveness of their token spaces (e.g., amino acid tokens). In this work, we propose and define the concept of language expressiveness: the ability of a given language, using its tokens and grammar, to encode information. We show that the limited expressiveness of protein language severely restricts the applicability of CoT-style reasoning. To overcome this, we introduce reflection pretraining, for the first time in a biological sequence model, which enables the model to engage in intermediate reasoning through the generation of auxiliary "thinking tokens" beyond simple answer tokens. Theoretically, we demonstrate that our augmented token set significantly enhances biological language expressiveness, thereby improving the overall reasoning capacity of the model. Experimentally, our pretraining approach teaches protein models to self-correct and leads to substantial performance gains compared to standard pretraining.
Abstract:Distilling the reasoning capabilities from a large language model (LLM) to a smaller student model often involves training on substantial amounts of reasoning data. However, distillation over lengthy sequences with prompt (P), chain-of-thought (CoT), and answer (A) segments makes the process computationally expensive. In this work, we investigate how the allocation of supervision across different segments (P, CoT, A) affects student performance. Our analysis shows that selective knowledge distillation over only the CoT tokens can be effective when the prompt and answer information is encompassed by it. Building on this insight, we establish a truncation protocol to quantify computation-quality tradeoffs as a function of sequence length. We observe that training on only the first $50\%$ of tokens of every training sequence can retain, on average, $\approx94\%$ of full-sequence performance on math benchmarks while reducing training time, memory usage, and FLOPs by about $50\%$ each. These findings suggest that reasoning distillation benefits from prioritizing early reasoning tokens and provides a simple lever for computation-quality tradeoffs. Codes are available at https://github.com/weiruichen01/distilling-the-essence.
Abstract:We introduce {AraHealthQA 2025}, the {Comprehensive Arabic Health Question Answering Shared Task}, held in conjunction with {ArabicNLP 2025} (co-located with EMNLP 2025). This shared task addresses the paucity of high-quality Arabic medical QA resources by offering two complementary tracks: {MentalQA}, focusing on Arabic mental health Q\&A (e.g., anxiety, depression, stigma reduction), and {MedArabiQ}, covering broader medical domains such as internal medicine, pediatrics, and clinical decision making. Each track comprises multiple subtasks, evaluation datasets, and standardized metrics, facilitating fair benchmarking. The task was structured to promote modeling under realistic, multilingual, and culturally nuanced healthcare contexts. We outline the dataset creation, task design and evaluation framework, participation statistics, baseline systems, and summarize the overall outcomes. We conclude with reflections on the performance trends observed and prospects for future iterations in Arabic health QA.
Abstract:Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce Pearl, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 45 annotators from across the Arab world, Pearl comprises over K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks Pearl and Pearl-Lite along with a specialized subset Pearl-X explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. Pearl establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.
Abstract:Africa's rich linguistic diversity remains significantly underrepresented in speech technologies, creating barriers to digital inclusion. To alleviate this challenge, we systematically map the continent's speech space of datasets and technologies, leading to a new comprehensive benchmark SimbaBench for downstream African speech tasks. Using SimbaBench, we introduce the Simba family of models, achieving state-of-the-art performance across multiple African languages and speech tasks. Our benchmark analysis reveals critical patterns in resource availability, while our model evaluation demonstrates how dataset quality, domain diversity, and language family relationships influence performance across languages. Our work highlights the need for expanded speech technology resources that better reflect Africa's linguistic diversity and provides a solid foundation for future research and development efforts toward more inclusive speech technologies.
Abstract:Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in LLM development.