Abstract:With recent advances in building foundation models for texts and video data, there is a surge of interest in foundation models for time series. A family of models have been developed, utilizing a temporal auto-regressive generative Transformer architecture, whose effectiveness has been proven in Large Language Models. While the empirical results are promising, almost all existing time series foundation models have only been tested on well-curated ``benchmark'' datasets very similar to texts. However, real-world time series exhibit unique challenges, such as variable channel sizes across domains, missing values, and varying signal sampling intervals due to the multi-resolution nature of real-world data. Additionally, the uni-directional nature of temporally auto-regressive decoding limits the incorporation of domain knowledge, such as physical laws expressed as partial differential equations (PDEs). To address these challenges, we introduce the Time Diffusion Transformer (TimeDiT), a general foundation model for time series that employs a denoising diffusion paradigm instead of temporal auto-regressive generation. TimeDiT leverages the Transformer architecture to capture temporal dependencies and employs diffusion processes to generate high-quality candidate samples without imposing stringent assumptions on the target distribution via novel masking schemes and a channel alignment strategy. Furthermore, we propose a finetuning-free model editing strategy that allows the seamless integration of external knowledge during the sampling process without updating any model parameters. Extensive experiments conducted on a varity of tasks such as forecasting, imputation, and anomaly detection, demonstrate the effectiveness of TimeDiT.
Abstract:Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.
Abstract:Recent years have witnessed the sustained evolution of misinformation that aims at manipulating public opinions. Unlike traditional rumors or fake news editors who mainly rely on generated and/or counterfeited images, text and videos, current misinformation creators now more tend to use out-of-context multimedia contents (e.g. mismatched images and captions) to deceive the public and fake news detection systems. This new type of misinformation increases the difficulty of not only detection but also clarification, because every individual modality is close enough to true information. To address this challenge, in this paper we explore how to achieve interpretable cross-modal de-contextualization detection that simultaneously identifies the mismatched pairs and the cross-modal contradictions, which is helpful for fact-check websites to document clarifications. The proposed model first symbolically disassembles the text-modality information to a set of fact queries based on the Abstract Meaning Representation of the caption and then forwards the query-image pairs into a pre-trained large vision-language model select the ``evidences" that are helpful for us to detect misinformation. Extensive experiments indicate that the proposed methodology can provide us with much more interpretable predictions while maintaining the accuracy same as the state-of-the-art model on this task.
Abstract:We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) algorithm that provably learns a near-globally-optimal policy using only local information. In particular, we show that, despite restricting each agent's attention to only its $\kappa$-hop neighborhood, the agents are able to learn a policy with an optimality gap that decays polynomially in $\kappa$. In addition, we show the finite-sample convergence of LPI to the global optimal policy, which explicitly captures the trade-off between optimality and computational complexity in choosing $\kappa$. Numerical simulations demonstrate the effectiveness of LPI.
Abstract:Recent years have witnessed the rise of misinformation campaigns that spread specific narratives on social media to manipulate public opinions on different areas, such as politics and healthcare. Consequently, an effective and efficient automatic methodology to estimate the influence of the misinformation on user beliefs and activities is needed. However, existing works on misinformation impact estimation either rely on small-scale psychological experiments or can only discover the correlation between user behaviour and misinformation. To address these issues, in this paper, we build up a causal framework that model the causal effect of misinformation from the perspective of temporal point process. To adapt the large-scale data, we design an efficient yet precise way to estimate the Individual Treatment Effect(ITE) via neural temporal point process and gaussian mixture models. Extensive experiments on synthetic dataset verify the effectiveness and efficiency of our model. We further apply our model on a real-world dataset of social media posts and engagements about COVID-19 vaccines. The experimental results indicate that our model recognized identifiable causal effect of misinformation that hurts people's subjective emotions toward the vaccines.
Abstract:Recent years have witnessed an increasing use of coordinated accounts on social media, operated by misinformation campaigns to influence public opinion and manipulate social outcomes. Consequently, there is an urgent need to develop an effective methodology for coordinated group detection to combat the misinformation on social media. However, existing works suffer from various drawbacks, such as, either limited performance due to extreme reliance on predefined signatures of coordination, or instead an inability to address the natural sparsity of account activities on social media with useful prior domain knowledge. Therefore, in this paper, we propose a coordination detection framework incorporating neural temporal point process with prior knowledge such as temporal logic or pre-defined filtering functions. Specifically, when modeling the observed data from social media with neural temporal point process, we jointly learn a Gibbs-like distribution of group assignment based on how consistent an assignment is to (1) the account embedding space and (2) the prior knowledge. To address the challenge that the distribution is hard to be efficiently computed and sampled from, we design a theoretically guaranteed variational inference approach to learn a mean-field approximation for it. Experimental results on a real-world dataset show the effectiveness of our proposed method compared to the SOTA model in both unsupervised and semi-supervised settings. We further apply our model on a COVID-19 Vaccine Tweets dataset. The detection result suggests the presence of suspicious coordinated efforts on spreading misinformation about COVID-19 vaccines.
Abstract:Vaccine hesitancy and misinformation on social media has increased concerns about COVID-19 vaccine uptake required to achieve herd immunity and overcome the pandemic. However anti-science and political misinformation and conspiracies have been rampant throughout the pandemic. For COVID-19 vaccines, we investigate misinformation and conspiracy campaigns and their characteristic behaviours. We identify whether coordinated efforts are used to promote misinformation in vaccine related discussions, and find accounts coordinately promoting a `Great Reset' conspiracy group promoting vaccine related misinformation and strong anti-vaccine and anti-social messages such as boycott vaccine passports, no lock-downs and masks. We characterize other misinformation communities from the information diffusion structure, and study the large anti-vaccine misinformation community and smaller anti-vaccine communities, including a far-right anti-vaccine conspiracy group. In comparison with the mainstream and health news, left-leaning group, which are more pro-vaccine, the right-leaning group is influenced more by the anti-vaccine and far-right misinformation/conspiracy communities. The misinformation communities are more vocal either specific to the vaccine discussion or political discussion, and we find other differences in the characteristic behaviours of different communities. Lastly, we investigate misinformation narratives and tactics of information distortion that can increase vaccine hesitancy, using topic modeling and comparison with reported vaccine side-effects (VAERS) finding rarer side-effects are more frequently discussed on social media.
Abstract:Recent works reveal that network embedding techniques enable many machine learning models to handle diverse downstream tasks on graph structured data. However, as previous methods usually focus on learning embeddings for a single network, they can not learn representations transferable on multiple networks. Hence, it is important to design a network embedding algorithm that supports downstream model transferring on different networks, known as domain adaptation. In this paper, we propose a novel Domain Adaptive Network Embedding framework, which applies graph convolutional network to learn transferable embeddings. In DANE, nodes from multiple networks are encoded to vectors via a shared set of learnable parameters so that the vectors share an aligned embedding space. The distribution of embeddings on different networks are further aligned by adversarial learning regularization. In addition, DANE's advantage in learning transferable network embedding can be guaranteed theoretically. Extensive experiments reflect that the proposed framework outperforms other state-of-the-art network embedding baselines in cross-network domain adaptation tasks.