Abstract:Most existing crowd counting systems rely on the availability of the object location annotation which can be expensive to obtain. To reduce the annotation cost, one attractive solution is to leverage a large number of unlabeled images to build a crowd counting model in semi-supervised fashion. This paper tackles the semi-supervised crowd counting problem from the perspective of feature learning. Our key idea is to leverage the unlabeled images to train a generic feature extractor rather than the entire network of a crowd counter. The rationale of this design is that learning the feature extractor can be more reliable and robust towards the inevitable noisy supervision generated from the unlabeled data. Also, on top of a good feature extractor, it is possible to build a density map regressor with much fewer density map annotations. Specifically, we proposed a novel semi-supervised crowd counting method which is built upon two innovative components: (1) a set of inter-related binary segmentation tasks are derived from the original density map regression task as the surrogate prediction target; (2) the surrogate target predictors are learned from both labeled and unlabeled data by utilizing a proposed self-training scheme which fully exploits the underlying constraints of these binary segmentation tasks. Through experiments, we show that the proposed method is superior over the existing semisupervised crowd counting method and other representative baselines.
Abstract:Most existing crowd counting methods require object location-level annotation, i.e., placing a dot at the center of an object. While being simpler than the bounding-box or pixel-level annotation, obtaining this annotation is still labor-intensive and time-consuming especially for images with highly crowded scenes. On the other hand, weaker annotations that only know the total count of objects can be almost effortless in many practical scenarios. Thus, it is desirable to develop a learning method that can effectively train models from count-level annotations. To this end, this paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised). To perform effective training in this scenario, we observe that the direct solution of regressing the integral of density map to the object count is not sufficient and it is beneficial to introduce stronger regularizations on the predicted density map of weakly-annotated images. We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps. Through extensive experiments on existing datasets and a newly proposed dataset, we validate the effectiveness of the proposed weakly-supervised method and demonstrate its superior performance over existing solutions.
Abstract:Enabling a neural network to sequentially learn multiple tasks is of great significance for expanding the applicability of neural networks in realistic human application scenarios. However, as the task sequence increases, the model quickly forgets previously learned skills; we refer to this loss of memory of long sequences as long-term catastrophic forgetting. There are two main reasons for the long-term forgetting: first, as the tasks increase, the intersection of the low-error parameter subspace satisfying these tasks will become smaller and smaller or even non-existent; The second is the cumulative error in the process of protecting the knowledge of previous tasks. This paper, we propose a confrontation mechanism in which neural pruning and synaptic consolidation are used to overcome long-term catastrophic forgetting. This mechanism distills task-related knowledge into a small number of parameters, and retains the old knowledge by consolidating a small number of parameters, while sparing most parameters to learn the follow-up tasks, which not only avoids forgetting but also can learn a large number of tasks. Specifically, the neural pruning iteratively relaxes the parameter conditions of the current task to expand the common parameter subspace of tasks; The modified synaptic consolidation strategy is comprised of two components, a novel network structure information considered measurement is proposed to calculate the parameter importance, and a element-wise parameter updating strategy that is designed to prevent significant parameters being overridden in subsequent learning. We verified the method on image classification, and the results showed that our proposed ANPSC approach outperforms the state-of-the-art methods. The hyperparametric sensitivity test further demonstrates the robustness of our proposed approach.
Abstract:Distant Supervised Relation Extraction (DSRE) is usually formulated as a problem of classifying a bag of sentences that contain two query entities, into the predefined relation classes. Most existing methods consider those relation classes as distinct semantic categories while ignoring their potential connection to query entities. In this paper, we propose to leverage this connection to improve the relation extraction accuracy. Our key ideas are twofold: (1) For sentences belonging to the same relation class, the expression style, i.e. words choice, can vary according to the query entities. To account for this style shift, the model should adjust its parameters in accordance with entity types. (2) Some relation classes are semantically similar, and the entity types appear in one relation may also appear in others. Therefore, it can be trained cross different relation classes and further enhance those classes with few samples, i.e., long-tail classes. To unify these two arguments, we developed a novel Dynamic Neural Network for Relation Extraction (DNNRE). The network adopts a novel dynamic parameter generator that dynamically generates the network parameters according to the query entity types and relation classes. By using this mechanism, the network can simultaneously handle the style shift problem and enhance the prediction accuracy for long-tail classes. Through our experimental study, we demonstrate the effectiveness of the proposed method and show that it can achieve superior performance over the state-of-the-art methods.
Abstract:Recently, Fully Convolutional Network (FCN) seems to be the go-to architecture for image segmentation, including semantic scene parsing. However, it is difficult for a generic FCN to discriminate pixels around the object boundaries, thus FCN based methods may output parsing results with inaccurate boundaries. Meanwhile, level set based active contours are superior to the boundary estimation due to the sub-pixel accuracy that they achieve. However, they are quite sensitive to initial settings. To address these limitations, in this paper we propose a novel Deep Multiphase Level Set (DMLS) method for semantic scene parsing, which efficiently incorporates multiphase level sets into deep neural networks. The proposed method consists of three modules, i.e., recurrent FCNs, adaptive multiphase level set, and deeply supervised learning. More specifically, recurrent FCNs learn multi-level representations of input images with different contexts. Adaptive multiphase level set drives the discriminative contour for each semantic class, which makes use of the advantages of both global and local information. In each time-step of the recurrent FCNs, deeply supervised learning is incorporated for model training. Extensive experiments on three public benchmarks have shown that our proposed method achieves new state-of-the-art performances.
Abstract:Semantic Scene Completion (SSC) aims to simultaneously predict the volumetric occupancy and semantic category of a 3D scene. It helps intelligent devices to understand and interact with the surrounding scenes. Due to the high-memory requirement, current methods only produce low-resolution completion predictions, and generally lose the object details. Furthermore, they also ignore the multi-scale spatial contexts, which play a vital role for the 3D inference. To address these issues, in this work we propose a novel deep learning framework, named Cascaded Context Pyramid Network (CCPNet), to jointly infer the occupancy and semantic labels of a volumetric 3D scene from a single depth image. The proposed CCPNet improves the labeling coherence with a cascaded context pyramid. Meanwhile, based on the low-level features, it progressively restores the fine-structures of objects with Guided Residual Refinement (GRR) modules. Our proposed framework has three outstanding advantages: (1) it explicitly models the 3D spatial context for performance improvement; (2) full-resolution 3D volumes are produced with structure-preserving details; (3) light-weight models with low-memory requirements are captured with a good extensibility. Extensive experiments demonstrate that in spite of taking a single-view depth map, our proposed framework can generate high-quality SSC results, and outperforms state-of-the-art approaches on both the synthetic SUNCG and real NYU datasets.
Abstract:A sketch based 3D shape retrieval
Abstract:Crowd counting problem aims to count the number of objects within an image or a frame in the videos and is usually solved by estimating the density map generated from the object location annotations. The values in the density map, by nature, take two possible states: zero indicating no object around, a non-zero value indicating the existence of objects and the value denoting the local object density. In contrast to traditional methods which do not differentiate the density prediction of these two states, we propose to use a dedicated network branch to predict the object/non-object mask and then combine its prediction with the input image to produce the density map. Our rationale is that the mask prediction could be better modeled as a binary segmentation problem and the difficulty of estimating the density could be reduced if the mask is known. A key to the proposed scheme is the strategy of incorporating the mask prediction into the density map estimator. To this end, we study five possible solutions, and via analysis and experimental validation we identify the most effective one. Through extensive experiments on five public datasets, we demonstrate the superior performance of the proposed approach over the baselines and show that our network could achieve the state-of-the-art performance.