Abstract:Large Language Models (LLMs) have demonstrated the ability to solve a wide range of practical tasks within multi-agent systems. However, existing human-designed multi-agent frameworks are typically limited to a small set of pre-defined scenarios, while current automated design methods suffer from several limitations, such as the lack of tool integration, dependence on external training data, and rigid communication structures. In this paper, we propose MetaAgent, a finite state machine based framework that can automatically generate a multi-agent system. Given a task description, MetaAgent will design a multi-agent system and polish it through an optimization algorithm. When the multi-agent system is deployed, the finite state machine will control the agent's actions and the state transitions. To evaluate our framework, we conduct experiments on both text-based tasks and practical tasks. The results indicate that the generated multi-agent system surpasses other auto-designed methods and can achieve a comparable performance with the human-designed multi-agent system, which is optimized for those specific tasks.
Abstract:The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce \textbf{PyBench}, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: \textbf{PyLlama3} achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: \href{https://github.com/Mercury7353/PyBench}{https://github.com/Mercury7353/PyBench}
Abstract:Integrating LLM and reinforcement learning (RL) agent effectively to achieve complementary performance is critical in high stake tasks like cybersecurity operations. In this study, we introduce SecurityBot, a LLM agent mentored by pre-trained RL agents, to support cybersecurity operations. In particularly, the LLM agent is supported with a profile module to generated behavior guidelines, a memory module to accumulate local experiences, a reflection module to re-evaluate choices, and an action module to reduce action space. Additionally, it adopts the collaboration mechanism to take suggestions from pre-trained RL agents, including a cursor for dynamic suggestion taken, an aggregator for multiple mentors' suggestions ranking and a caller for proactive suggestion asking. Building on the CybORG experiment framework, our experiences show that SecurityBot demonstrates significant performance improvement compared with LLM or RL standalone, achieving the complementary performance in the cybersecurity games.