Data61, CSIRO
Abstract:Large Language Models (LLMs) have revolutionized Recommender Systems (RS) through advanced generative user modeling. However, LLM-based RS (LLM-RS) often inadvertently perpetuates bias present in the training data, leading to severe fairness issues. Addressing these fairness problems in LLM-RS faces two significant challenges. 1) Existing debiasing methods, designed for specific bias types, lack the generality to handle diverse or emerging biases in real-world applications. 2) Debiasing methods relying on retraining are computationally infeasible given the massive parameter scale of LLMs. To overcome these challenges, we propose FUDLR (Fast Unified Debiasing for LLM-RS). The core idea is to reformulate the debiasing problem as an efficient machine unlearning task with two stages. First, FUDLR identifies bias-inducing samples to unlearn through a novel bias-agnostic mask, optimized to balance fairness improvement with accuracy preservation. Its bias-agnostic design allows adaptability to various or co-existing biases simply by incorporating different fairness metrics. Second, FUDLR performs efficient debiasing by estimating and removing the influence of identified samples on model parameters. Extensive experiments demonstrate that FUDLR effectively and efficiently improves fairness while preserving recommendation accuracy, offering a practical path toward socially responsible LLM-RS. The code and data are available at https://github.com/JinLi-i/FUDLR.
Abstract:Knowledge graphs (KGs) provide structured evidence that can ground large language model (LLM) reasoning for knowledge-intensive question answering. However, many practical KGs are private, and sending retrieved triples or exploration traces to closed-source LLM APIs introduces leakage risk. Existing privacy treatments focus on masking entity names, but they still face four limitations: structural leakage under semantic masking, uncontrollable remote interaction, fragile multi-hop and multi-entity reasoning, and limited experience reuse for stability and efficiency. To address these issues, we propose PrivGemo, a privacy-preserving retrieval-augmented framework for KG-grounded reasoning with memory-guided exposure control. PrivGemo uses a dual-tower design to keep raw KG knowledge local while enabling remote reasoning over an anonymized view that goes beyond name masking to limit both semantic and structural exposure. PrivGemo supports multi-hop, multi-entity reasoning by retrieving anonymized long-hop paths that connect all topic entities, while keeping grounding and verification on the local KG. A hierarchical controller and a privacy-aware experience memory further reduce unnecessary exploration and remote interactions. Comprehensive experiments on six benchmarks show that PrivGemo achieves overall state-of-the-art results, outperforming the strongest baseline by up to 17.1%. Furthermore, PrivGemo enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
Abstract:Error detection (ED), which aims to identify incorrect or inconsistent cell values in tabular data, is important for ensuring data quality. Recent state-of-the-art ED methods leverage the pre-trained knowledge and semantic capability embedded in large language models (LLMs) to directly label whether a cell is erroneous. However, this LLM-as-a-labeler pipeline (1) relies on the black box, implicit decision process, thus failing to provide explainability for the detection results, and (2) is highly sensitive to prompts, yielding inconsistent outputs due to inherent model stochasticity, therefore lacking robustness. To address these limitations, we propose an LLM-as-an-inducer framework that adopts LLM to induce the decision tree for ED (termed TreeED) and further ensembles multiple such trees for consensus detection (termed ForestED), thereby improving explainability and robustness. Specifically, based on prompts derived from data context, decision tree specifications and output requirements, TreeED queries the LLM to induce the decision tree skeleton, whose root-to-leaf decision paths specify the stepwise procedure for evaluating a given sample. Each tree contains three types of nodes: (1) rule nodes that perform simple validation checks (e.g., format or range), (2) Graph Neural Network (GNN) nodes that capture complex patterns (e.g., functional dependencies), and (3) leaf nodes that output the final decision types (error or clean). Furthermore, ForestED employs uncertainty-based sampling to obtain multiple row subsets, constructing a decision tree for each subset using TreeED. It then leverages an Expectation-Maximization-based algorithm that jointly estimates tree reliability and optimizes the consensus ED prediction. Extensive xperiments demonstrate that our methods are accurate, explainable and robust, achieving an average F1-score improvement of 16.1% over the best baseline.
Abstract:Knowledge Hypergraphs (KHs) have recently emerged as a knowledge representation for retrieval-augmented generation (RAG), offering a paradigm to model multi-entity relations into a structured form. However, existing KH-based RAG methods suffer from three major limitations: static retrieval planning, non-adaptive retrieval execution, and superficial use of KH structure and semantics, which constrain their ability to perform effective multi-hop question answering. To overcome these limitations, we propose PRoH, a dynamic Planning and Reasoning over Knowledge Hypergraphs framework. PRoH incorporates three core innovations: (i) a context-aware planning module that sketches the local KH neighborhood to guide structurally grounded reasoning plan generation; (ii) a structured question decomposition process that organizes subquestions as a dynamically evolving Directed Acyclic Graph (DAG) to enable adaptive, multi-trajectory exploration; and (iii) an Entity-Weighted Overlap (EWO)-guided reasoning path retrieval algorithm that prioritizes semantically coherent hyperedge traversals. Experiments across multiple domains demonstrate that PRoH achieves state-of-the-art performance, surpassing the prior SOTA model HyperGraphRAG by an average of 19.73% in F1 and 8.41% in Generation Evaluation (G-E) score, while maintaining strong robustness in long-range multi-hop reasoning tasks.
Abstract:Recent studies have shown that recommender systems (RSs) are highly vulnerable to data poisoning attacks, where malicious actors inject fake user profiles, including a group of well-designed fake ratings, to manipulate recommendations. Due to security and privacy constraints in practice, attackers typically possess limited knowledge of the victim system and thus need to craft profiles that have transferability across black-box RSs. To maximize the attack impact, the profiles often remains imperceptible. However, generating such high-quality profiles with the restricted resources is challenging. Some works suggest incorporating fake textual reviews to strengthen the profiles; yet, the poor quality of the reviews largely undermines the attack effectiveness and imperceptibility under the practical setting. To tackle the above challenges, in this paper, we propose to enhance the quality of the review text by harnessing in-context learning (ICL) capabilities of multimodal foundation models. To this end, we introduce a demonstration retrieval algorithm and a text style transfer strategy to augment the navie ICL. Specifically, we propose a novel practical attack framework named RAGAN to generate high-quality fake user profiles, which can gain insights into the robustness of RSs. The profiles are generated by a jailbreaker and collaboratively optimized on an instructional agent and a guardian to improve the attack transferability and imperceptibility. Comprehensive experiments on various real-world datasets demonstrate that RAGAN achieves the state-of-the-art poisoning attack performance.
Abstract:Health, Safety, and Environment (HSE) compliance assessment demands dynamic real-time decision-making under complicated regulations and complex human-machine-environment interactions. While large language models (LLMs) hold significant potential for decision intelligence and contextual dialogue, their capacity for domain-specific knowledge in HSE and structured legal reasoning remains underexplored. We introduce HSE-Bench, the first benchmark dataset designed to evaluate the HSE compliance assessment capabilities of LLM. HSE-Bench comprises over 1,000 manually curated questions drawn from regulations, court cases, safety exams, and fieldwork videos, and integrates a reasoning flow based on Issue spotting, rule Recall, rule Application, and rule Conclusion (IRAC) to assess the holistic reasoning pipeline. We conduct extensive evaluations on different prompting strategies and more than 10 LLMs, including foundation models, reasoning models and multimodal vision models. The results show that, although current LLMs achieve good performance, their capabilities largely rely on semantic matching rather than principled reasoning grounded in the underlying HSE compliance context. Moreover, their native reasoning trace lacks the systematic legal reasoning required for rigorous HSE compliance assessment. To alleviate these, we propose a new prompting technique, Reasoning of Expert (RoE), which guides LLMs to simulate the reasoning process of different experts for compliance assessment and reach a more accurate unified decision. We hope our study highlights reasoning gaps in LLMs for HSE compliance and inspires further research on related tasks.
Abstract:Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present Hydra, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. Hydra handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, Hydra uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, Hydra fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that Hydra achieves overall state-of-the-art results on all benchmarks with GPT-3.5, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, Hydra enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
Abstract:Large language model-based agents are increasingly used in recommender systems (Agent4RSs) to achieve personalized behavior modeling. Specifically, Agent4RSs introduces memory mechanisms that enable the agents to autonomously learn and self-evolve from real-world interactions. However, to the best of our knowledge, how robust Agent4RSs are remains unexplored. As such, in this paper, we propose the first work to attack Agent4RSs by perturbing agents' memories, not only to uncover their limitations but also to enhance their security and robustness, ensuring the development of safer and more reliable AI agents. Given the security and privacy concerns, it is more practical to launch attacks under a black-box setting, where the accurate knowledge of the victim models cannot be easily obtained. Moreover, the practical attacks are often stealthy to maximize the impact. To this end, we propose a novel practical attack framework named DrunkAgent. DrunkAgent consists of a generation module, a strategy module, and a surrogate module. The generation module aims to produce effective and coherent adversarial textual triggers, which can be used to achieve attack objectives such as promoting the target items. The strategy module is designed to `get the target agents drunk' so that their memories cannot be effectively updated during the interaction process. As such, the triggers can play the best role. Both of the modules are optimized on the surrogate module to improve the transferability and imperceptibility of the attacks. By identifying and analyzing the vulnerabilities, our work provides critical insights that pave the way for building safer and more resilient Agent4RSs. Extensive experiments across various real-world datasets demonstrate the effectiveness of DrunkAgent.




Abstract:Dynamic Text-Attributed Graphs (DyTAGs) are a novel graph paradigm that captures evolving temporal edges alongside rich textual attributes. A prior approach to representing DyTAGs leverages pre-trained language models to encode text attributes and subsequently integrates them into dynamic graph models. However, it follows edge-centric modeling, as in dynamic graph learning, which is limited in local structures and fails to exploit the unique characteristics of DyTAGs, leading to suboptimal performance. We observe that DyTAGs inherently comprise three distinct modalities-temporal, textual, and structural-often exhibiting dispersed or even orthogonal distributions, with the first two largely overlooked in existing research. Building on this insight, we propose MoMent, a model-agnostic multi-modal framework that can seamlessly integrate with dynamic graph models for structural modality learning. The core idea is to shift from edge-centric to node-centric modeling, fully leveraging three modalities for node representation. Specifically, MoMent presents non-shared node-centric encoders based on the attention mechanism to capture global temporal and semantic contexts from temporal and textual modalities, together with local structure learning, thus generating modality-specific tokens. To prevent disjoint latent space, we propose a symmetric alignment loss, an auxiliary objective that aligns temporal and textual tokens, ensuring global temporal-semantic consistency with a theoretical guarantee. Last, we design a lightweight adaptor to fuse these tokens, generating comprehensive and cohesive node representations. We theoretically demonstrate that MoMent enhances discriminative power over exclusive edge-centric modeling. Extensive experiments across seven datasets and two downstream tasks show that MoMent achieves up to 33.62% improvement against the baseline using four dynamic graph models.




Abstract:With the proliferation of data across various domains, there is a critical demand for tools that enable non-experts to derive meaningful insights without deep data analysis skills. To address this need, existing automatic fact sheet generation tools offer heuristic-based solutions to extract facts and generate stories. However, they inadequately grasp the semantics of data and struggle to generate narratives that fully capture the semantics of the dataset or align the fact sheet with specific user needs. Addressing these shortcomings, this paper introduces \tool, a novel tool designed for the automatic generation and customisation of fact sheets. \tool applies the concept of collaborative AI workers to transform raw tabular dataset into comprehensive, visually compelling fact sheets. We define effective taxonomy to profile AI worker for specialised tasks. Furthermore, \tool empowers users to refine these fact sheets through intuitive natural language commands, ensuring the final outputs align closely with individual preferences and requirements. Our user evaluation with 18 participants confirms that \tool not only surpasses state-of-the-art baselines in automated fact sheet production but also provides a positive user experience during customization tasks.