Abstract:Advanced Driver Assistance Systems (ADAS) and Advanced Driving Systems (ADS) are key to improving road safety, yet most existing implementations focus primarily on the vehicle ahead, neglecting the behavior of following vehicles. This shortfall often leads to chain reaction collisions in high speed, densely spaced traffic particularly when a middle vehicle suddenly brakes and trailing vehicles cannot respond in time. To address this critical gap, we propose a novel longitudinal control and collision avoidance algorithm that integrates adaptive cruising with emergency braking. Leveraging deep reinforcement learning, our method simultaneously accounts for both leading and following vehicles. Through a data preprocessing framework that calibrates real-world sensor data, we enhance the robustness and reliability of the training process, ensuring the learned policy can handle diverse driving conditions. In simulated high risk scenarios (e.g., emergency braking in dense traffic), the algorithm effectively prevents potential pile up collisions, even in situations involving heavy duty vehicles. Furthermore, in typical highway scenarios where three vehicles decelerate, the proposed DRL approach achieves a 99% success rate far surpassing the standard Federal Highway Administration speed concepts guide, which reaches only 36.77% success under the same conditions.
Abstract:Digital network twins (DNTs) are virtual representations of physical networks, designed to enable real-time monitoring, simulation, and optimization of network performance. When integrated with machine learning (ML) techniques, particularly federated learning (FL) and reinforcement learning (RL), DNTs emerge as powerful solutions for managing the complexities of network operations. This article presents a comprehensive analysis of the synergy of DNTs, FL, and RL techniques, showcasing their collective potential to address critical challenges in 6G networks. We highlight key technical challenges that need to be addressed, such as ensuring network reliability, achieving joint data-scenario forecasting, and maintaining security in high-risk environments. Additionally, we propose several pipelines that integrate DNT and ML within coherent frameworks to enhance network optimization and security. Case studies demonstrate the practical applications of our proposed pipelines in edge caching and vehicular networks. In edge caching, the pipeline achieves over 80% cache hit rates while balancing base station loads. In autonomous vehicular system, it ensure a 100% no-collision rate, showcasing its reliability in safety-critical scenarios. By exploring these synergies, we offer insights into the future of intelligent and adaptive network systems that automate decision-making and problem-solving.
Abstract:Existing Advanced Driver Assistance Systems primarily focus on the vehicle directly ahead, often overlooking potential risks from following vehicles. This oversight can lead to ineffective handling of high risk situations, such as high speed, closely spaced, multi vehicle scenarios where emergency braking by one vehicle might trigger a pile up collision. To overcome these limitations, this study introduces a novel deep reinforcement learning based algorithm for longitudinal control and collision avoidance. This proposed algorithm effectively considers the behavior of both leading and following vehicles. Its implementation in simulated high risk scenarios, which involve emergency braking in dense traffic where traditional systems typically fail, has demonstrated the algorithm ability to prevent potential pile up collisions, including those involving heavy duty vehicles.
Abstract:The chest X-Ray (CXR) is the one of the most common clinical exam used to diagnose thoracic diseases and abnormalities. The volume of CXR scans generated daily in hospitals is huge. Therefore, an automated diagnosis system able to save the effort of doctors is of great value. At present, the applications of artificial intelligence in CXR diagnosis usually use pattern recognition to classify the scans. However, such methods rely on labeled databases, which are costly and usually have large error rates. In this work, we built a database containing more than 12,000 CXR scans and radiological reports, and developed a model based on deep convolutional neural network and recurrent network with attention mechanism. The model learns features from the CXR scans and the associated raw radiological reports directly; no additional labeling of the scans are needed. The model provides automated recognition of given scans and generation of reports. The quality of the generated reports was evaluated with both the CIDEr scores and by radiologists as well. The CIDEr scores are found to be around 5.8 on average for the testing dataset. Further blind evaluation suggested a comparable performance against human radiologist.