Abstract:This paper proposes a novel voice conversion (VC) method based on non-autoregressive sequence-to-sequence (NAR-S2S) models. Inspired by the great success of NAR-S2S models such as FastSpeech in text-to-speech (TTS), we extend the FastSpeech2 model for the VC problem. We introduce the convolution-augmented Transformer (Conformer) instead of the Transformer, making it possible to capture both local and global context information from the input sequence. Furthermore, we extend variance predictors to variance converters to explicitly convert the source speaker's prosody components such as pitch and energy into the target speaker. The experimental evaluation with the Japanese speaker dataset, which consists of male and female speakers of 1,000 utterances, demonstrates that the proposed model enables us to perform more stable, faster, and better conversion than autoregressive S2S (AR-S2S) models such as Tacotron2 and Transformer.
Abstract:This paper describes the AS-NU systems for two tracks in MultiSpeaker Multi-Style Voice Cloning Challenge (M2VoC). The first track focuses on using a small number of 100 target utterances for voice cloning, while the second track focuses on using only 5 target utterances for voice cloning. Due to the serious lack of data in the second track, we selected the speaker most similar to the target speaker from the training data of the TTS system, and used the speaker's utterances and the given 5 target utterances to fine-tune our model. The evaluation results show that our systems on the two tracks perform similarly in terms of quality, but there is still a clear gap between the similarity score of the second track and the similarity score of the first track.
Abstract:In this paper, we present an open-source software for developing a nonparallel voice conversion (VC) system named crank. Although we have released an open-source VC software based on the Gaussian mixture model named sprocket in the last VC Challenge, it is not straightforward to apply any speech corpus because it is necessary to prepare parallel utterances of source and target speakers to model a statistical conversion function. To address this issue, in this study, we developed a new open-source VC software that enables users to model the conversion function by using only a nonparallel speech corpus. For implementing the VC software, we used a vector-quantized variational autoencoder (VQVAE). To rapidly examine the effectiveness of recent technologies developed in this research field, crank also supports several representative works for autoencoder-based VC methods such as the use of hierarchical architectures, cyclic architectures, generative adversarial networks, speaker adversarial training, and neural vocoders. Moreover, it is possible to automatically estimate objective measures such as mel-cepstrum distortion and pseudo mean opinion score based on MOSNet. In this paper, we describe representative functions developed in crank and make brief comparisons by objective evaluations.
Abstract:Synthesized speech from articulatory movements can have real-world use for patients with vocal cord disorders, situations requiring silent speech, or in high-noise environments. In this work, we present EMA2S, an end-to-end multimodal articulatory-to-speech system that directly converts articulatory movements to speech signals. We use a neural-network-based vocoder combined with multimodal joint-training, incorporating spectrogram, mel-spectrogram, and deep features. The experimental results confirm that the multimodal approach of EMA2S outperforms the baseline system in terms of both objective evaluation and subjective evaluation metrics. Moreover, results demonstrate that joint mel-spectrogram and deep feature loss training can effectively improve system performance.
Abstract:We propose a simple method for automatic speech recognition (ASR) by fine-tuning BERT, which is a language model (LM) trained on large-scale unlabeled text data and can generate rich contextual representations. Our assumption is that given a history context sequence, a powerful LM can narrow the range of possible choices and the speech signal can be used as a simple clue. Hence, comparing to conventional ASR systems that train a powerful acoustic model (AM) from scratch, we believe that speech recognition is possible by simply fine-tuning a BERT model. As an initial study, we demonstrate the effectiveness of the proposed idea on the AISHELL dataset and show that stacking a very simple AM on top of BERT can yield reasonable performance.
Abstract:This paper describes the recent development of ESPnet (https://github.com/espnet/espnet), an end-to-end speech processing toolkit. This project was initiated in December 2017 to mainly deal with end-to-end speech recognition experiments based on sequence-to-sequence modeling. The project has grown rapidly and now covers a wide range of speech processing applications. Now ESPnet also includes text to speech (TTS), voice conversation (VC), speech translation (ST), and speech enhancement (SE) with support for beamforming, speech separation, denoising, and dereverberation. All applications are trained in an end-to-end manner, thanks to the generic sequence to sequence modeling properties, and they can be further integrated and jointly optimized. Also, ESPnet provides reproducible all-in-one recipes for these applications with state-of-the-art performance in various benchmarks by incorporating transformer, advanced data augmentation, and conformer. This project aims to provide up-to-date speech processing experience to the community so that researchers in academia and various industry scales can develop their technologies collaboratively.
Abstract:We present a novel approach to any-to-one (A2O) voice conversion (VC) in a sequence-to-sequence (seq2seq) framework. A2O VC aims to convert any speaker, including those unseen during training, to a fixed target speaker. We utilize vq-wav2vec (VQW2V), a discretized self-supervised speech representation that was learned from massive unlabeled data, which is assumed to be speaker-independent and well corresponds to underlying linguistic contents. Given a training dataset of the target speaker, we extract VQW2V and acoustic features to estimate a seq2seq mapping function from the former to the latter. With the help of a pretraining method and a newly designed postprocessing technique, our model can be generalized to only 5 min of data, even outperforming the same model trained with parallel data.
Abstract:In this paper, we present the voice conversion (VC) systems developed at Nagoya University (NU) for the Voice Conversion Challenge 2020 (VCC2020). We aim to determine the effectiveness of two recent significant technologies in VC: sequence-to-sequence (seq2seq) models and autoregressive (AR) neural vocoders. Two respective systems were developed for the two tasks in the challenge: for task 1, we adopted the Voice Transformer Network, a Transformer-based seq2seq VC model, and extended it with synthetic parallel data to tackle nonparallel data; for task 2, we used the frame-based cyclic variational autoencoder (CycleVAE) to model the spectral features of a speech waveform and the AR WaveNet vocoder with additional fine-tuning. By comparing with the baseline systems, we confirmed that the seq2seq modeling can improve the conversion similarity and that the use of AR vocoders can improve the naturalness of the converted speech.
Abstract:This paper presents the sequence-to-sequence (seq2seq) baseline system for the voice conversion challenge (VCC) 2020. We consider a naive approach for voice conversion (VC), which is to first transcribe the input speech with an automatic speech recognition (ASR) model, followed using the transcriptions to generate the voice of the target with a text-to-speech (TTS) model. We revisit this method under a sequence-to-sequence (seq2seq) framework by utilizing ESPnet, an open-source end-to-end speech processing toolkit, and the many well-configured pretrained models provided by the community. Official evaluation results show that our system comes out top among the participating systems in terms of conversion similarity, demonstrating the promising ability of seq2seq models to convert speaker identity. The implementation is made open-source at: https://github.com/espnet/espnet/tree/master/egs/vcc20.
Abstract:Sequence-to-sequence (seq2seq) voice conversion (VC) models are attractive owing to their ability to convert prosody. Nonetheless, without sufficient data, seq2seq VC models can suffer from unstable training and mispronunciation problems in the converted speech, thus far from practical. To tackle these shortcomings, we propose to transfer knowledge from other speech processing tasks where large-scale corpora are easily available, typically text-to-speech (TTS) and automatic speech recognition (ASR). We argue that VC models initialized with such pretrained ASR or TTS model parameters can generate effective hidden representations for high-fidelity, highly intelligible converted speech. We apply such techniques to recurrent neural network (RNN)-based and Transformer based models, and through systematical experiments, we demonstrate the effectiveness of the pretraining scheme and the superiority of Transformer based models over RNN-based models in terms of intelligibility, naturalness, and similarity.