Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

A Cyclical Approach to Synthetic and Natural Speech Mismatch Refinement of Neural Post-filter for Low-cost Text-to-speech System


Jul 13, 2022
Yi-Chiao Wu, Patrick Lumban Tobing, Kazuki Yasuhara, Noriyuki Matsunaga, Yamato Ohtani, Tomoki Toda

* 15 pages, 7 figures, 10 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Direct Noisy Speech Modeling for Noisy-to-Noisy Voice Conversion


Nov 13, 2021
Chao Xie, Yi-Chiao Wu, Patrick Lumban Tobing, Wen-Chin Huang, Tomoki Toda


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Noisy-to-Noisy Voice Conversion Framework with Denoising Model


Sep 22, 2021
Chao Xie, Yi-Chiao Wu, Patrick Lumban Tobing, Wen-Chin Huang, Tomoki Toda


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Low-Latency Real-Time Non-Parallel Voice Conversion based on Cyclic Variational Autoencoder and Multiband WaveRNN with Data-Driven Linear Prediction


May 20, 2021
Patrick Lumban Tobing, Tomoki Toda

* Submitted to SSW11 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

High-Fidelity and Low-Latency Universal Neural Vocoder based on Multiband WaveRNN with Data-Driven Linear Prediction for Discrete Waveform Modeling


May 20, 2021
Patrick Lumban Tobing, Tomoki Toda

* Submitted to INTERSPEECH 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

crank: An Open-Source Software for Nonparallel Voice Conversion Based on Vector-Quantized Variational Autoencoder


Mar 04, 2021
Kazuhiro Kobayashi, Wen-Chin Huang, Yi-Chiao Wu, Patrick Lumban Tobing, Tomoki Hayashi, Tomoki Toda

* Accepted to ICASSP 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The NU Voice Conversion System for the Voice Conversion Challenge 2020: On the Effectiveness of Sequence-to-sequence Models and Autoregressive Neural Vocoders


Oct 09, 2020
Wen-Chin Huang, Patrick Lumban Tobing, Yi-Chiao Wu, Kazuhiro Kobayashi, Tomoki Toda

* Accepted to the ISCA Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Baseline System of Voice Conversion Challenge 2020 with Cyclic Variational Autoencoder and Parallel WaveGAN


Oct 09, 2020
Patrick Lumban Tobing, Yi-Chiao Wu, Tomoki Toda


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Non-Parallel Voice Conversion with Cyclic Variational Autoencoder


Jul 24, 2019
Patrick Lumban Tobing, Yi-Chiao Wu, Tomoki Hayashi, Kazuhiro Kobayashi, Tomoki Toda

* Accepted to INTERSPEECH 2019 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Refined WaveNet Vocoder for Variational Autoencoder Based Voice Conversion


Nov 27, 2018
Wen-Chin Huang, Yi-Chiao Wu, Hsin-Te Hwang, Patrick Lumban Tobing, Tomoki Hayashi, Kazuhiro Kobayashi, Tomoki Toda, Yu Tsao, Hsin-Min Wang

* 5 pages, 5 figures, 2 tables. Submitted to IEEE ICASSP 2019 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email