Alert button
Picture for Thomas Brettin

Thomas Brettin

Alert button

University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA, Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, USA

DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies

Add code
Bookmark button
Alert button
Oct 11, 2023
Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen, Chengming Zhang, Masahiro Tanaka, Xiaoxia Wu, Jeff Rasley, Ammar Ahmad Awan, Connor Holmes, Martin Cai, Adam Ghanem, Zhongzhu Zhou, Yuxiong He, Pete Luferenko, Divya Kumar, Jonathan Weyn, Ruixiong Zhang, Sylwester Klocek, Volodymyr Vragov, Mohammed AlQuraishi, Gustaf Ahdritz, Christina Floristean, Cristina Negri, Rao Kotamarthi, Venkatram Vishwanath, Arvind Ramanathan, Sam Foreman, Kyle Hippe, Troy Arcomano, Romit Maulik, Maxim Zvyagin, Alexander Brace, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Zhen Xie, Diangen Lin, Maulik Shukla, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Prasanna Balaprakash, Gina Tourassi, John Gounley, Heidi Hanson, Thomas E Potok, Massimiliano Lupo Pasini, Kate Evans, Dan Lu, Dalton Lunga, Junqi Yin, Sajal Dash, Feiyi Wang, Mallikarjun Shankar, Isaac Lyngaas, Xiao Wang, Guojing Cong, Pei Zhang, Ming Fan, Siyan Liu, Adolfy Hoisie, Shinjae Yoo, Yihui Ren, William Tang, Kyle Felker, Alexey Svyatkovskiy, Hang Liu, Ashwin Aji, Angela Dalton, Michael Schulte, Karl Schulz, Yuntian Deng, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Anima Anandkumar, Rick Stevens

Figure 1 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Figure 2 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Figure 3 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Figure 4 for DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
Viaarxiv icon

CrossedWires: A Dataset of Syntactically Equivalent but Semantically Disparate Deep Learning Models

Add code
Bookmark button
Alert button
Aug 29, 2021
Max Zvyagin, Thomas Brettin, Arvind Ramanathan, Sumit Kumar Jha

Figure 1 for CrossedWires: A Dataset of Syntactically Equivalent but Semantically Disparate Deep Learning Models
Figure 2 for CrossedWires: A Dataset of Syntactically Equivalent but Semantically Disparate Deep Learning Models
Figure 3 for CrossedWires: A Dataset of Syntactically Equivalent but Semantically Disparate Deep Learning Models
Figure 4 for CrossedWires: A Dataset of Syntactically Equivalent but Semantically Disparate Deep Learning Models
Viaarxiv icon

Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening

Add code
Bookmark button
Alert button
Jun 30, 2021
Austin Clyde, Thomas Brettin, Alexander Partin, Hyunseung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli, Shantenu Jha, Arvind Ramanathan, Rick Stevens

Figure 1 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 2 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 3 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 4 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Viaarxiv icon

Learning Curves for Drug Response Prediction in Cancer Cell Lines

Add code
Bookmark button
Alert button
Nov 25, 2020
Alexander Partin, Thomas Brettin, Yvonne A. Evrard, Yitan Zhu, Hyunseung Yoo, Fangfang Xia, Songhao Jiang, Austin Clyde, Maulik Shukla, Michael Fonstein, James H. Doroshow, Rick Stevens

Figure 1 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Figure 2 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Figure 3 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Figure 4 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Viaarxiv icon

Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response

Add code
Bookmark button
Alert button
May 13, 2020
Yitan Zhu, Thomas Brettin, Yvonne A. Evrard, Alexander Partin, Fangfang Xia, Maulik Shukla, Hyunseung Yoo, James H. Doroshow, Rick Stevens

Figure 1 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Figure 2 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Figure 3 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Figure 4 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Viaarxiv icon

Deep Medical Image Analysis with Representation Learning and Neuromorphic Computing

Add code
Bookmark button
Alert button
May 11, 2020
Neil Getty, Thomas Brettin, Dong Jin, Rick Stevens, Fangfang Xia

Figure 1 for Deep Medical Image Analysis with Representation Learning and Neuromorphic Computing
Figure 2 for Deep Medical Image Analysis with Representation Learning and Neuromorphic Computing
Figure 3 for Deep Medical Image Analysis with Representation Learning and Neuromorphic Computing
Figure 4 for Deep Medical Image Analysis with Representation Learning and Neuromorphic Computing
Viaarxiv icon