Picture for Tetsuya Sakai

Tetsuya Sakai

EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval

Add code
Oct 02, 2023
Viaarxiv icon

Open-Domain Dialogue Quality Evaluation: Deriving Nugget-level Scores from Turn-level Scores

Add code
Sep 30, 2023
Viaarxiv icon

Towards Consistency Filtering-Free Unsupervised Learning for Dense Retrieval

Add code
Aug 05, 2023
Viaarxiv icon

A Meta-Evaluation of C/W/L/A Metrics: System Ranking Similarity, System Ranking Consistency and Discriminative Power

Add code
Jul 06, 2023
Viaarxiv icon

SWAN: A Generic Framework for Auditing Textual Conversational Systems

Add code
May 15, 2023
Viaarxiv icon

A First Look at LLM-Powered Generative News Recommendation

Add code
May 11, 2023
Viaarxiv icon

NER-to-MRC: Named-Entity Recognition Completely Solving as Machine Reading Comprehension

Add code
May 06, 2023
Viaarxiv icon

Relevance Assessments for Web Search Evaluation: Should We Randomise or Prioritise the Pooled Documents? (CORRECTED VERSION)

Add code
Nov 02, 2022
Viaarxiv icon

Corrected Evaluation Results of the NTCIR WWW-2, WWW-3, and WWW-4 English Subtasks

Add code
Oct 19, 2022
Figure 1 for Corrected Evaluation Results of the NTCIR WWW-2, WWW-3, and WWW-4 English Subtasks
Figure 2 for Corrected Evaluation Results of the NTCIR WWW-2, WWW-3, and WWW-4 English Subtasks
Figure 3 for Corrected Evaluation Results of the NTCIR WWW-2, WWW-3, and WWW-4 English Subtasks
Figure 4 for Corrected Evaluation Results of the NTCIR WWW-2, WWW-3, and WWW-4 English Subtasks
Viaarxiv icon

Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective

Add code
Oct 18, 2022
Figure 1 for Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
Figure 2 for Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
Figure 3 for Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
Figure 4 for Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
Viaarxiv icon