Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Distributed Differentially Private Averaging with Improved Utility and Robustness to Malicious Parties

Jun 12, 2020
César Sabater, Aurélien Bellet, Jan Ramon

* 39 pages 

  Access Paper or Ask Questions

Design Choices for X-vector Based Speaker Anonymization

May 18, 2020
Brij Mohan Lal Srivastava, Natalia Tomashenko, Xin Wang, Emmanuel Vincent, Junichi Yamagishi, Mohamed Maouche, Aurélien Bellet, Marc Tommasi


  Access Paper or Ask Questions

Learning Fair Scoring Functions: Fairness Definitions, Algorithms and Generalization Bounds for Bipartite Ranking

Feb 19, 2020
Robin Vogel, Aurélien Bellet, Stéphan Clémençon

* 27 pages, 11 figures 

  Access Paper or Ask Questions

Advances and Open Problems in Federated Learning

Dec 10, 2019
Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao


  Access Paper or Ask Questions

Privacy-Preserving Adversarial Representation Learning in ASR: Reality or Illusion?

Nov 12, 2019
Brij Mohan Lal Srivastava, Aurélien Bellet, Marc Tommasi, Emmanuel Vincent


  Access Paper or Ask Questions

Evaluating Voice Conversion-based Privacy Protection against Informed Attackers

Nov 10, 2019
Brij Mohan Lal Srivastava, Nathalie Vauquier, Md Sahidullah, Aurélien Bellet, Marc Tommasi, Emmanuel Vincent


  Access Paper or Ask Questions

Private Protocols for U-Statistics in the Local Model and Beyond

Oct 09, 2019
James Bell, Aurélien Bellet, Adrià Gascón, Tejas Kulkarni


  Access Paper or Ask Questions

metric-learn: Metric Learning Algorithms in Python

Aug 13, 2019
William de Vazelhes, CJ Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet

* GitHub repository: https://github.com/scikit-learn-contrib/metric-learn 

  Access Paper or Ask Questions

Trade-offs in Large-Scale Distributed Tuplewise Estimation and Learning

Jun 21, 2019
Robin Vogel, Aurélien Bellet, Stephan Clémençon, Ons Jelassi, Guillaume Papa

* 23 pages, 6 figures, ECML 2019 

  Access Paper or Ask Questions

Communication-Efficient and Decentralized Multi-Task Boosting while Learning the Collaboration Graph

Jan 25, 2019
Valentina Zantedeschi, Aurélien Bellet, Marc Tommasi

* 25 pages 

  Access Paper or Ask Questions

Escaping the Curse of Dimensionality in Similarity Learning: Efficient Frank-Wolfe Algorithm and Generalization Bounds

Oct 31, 2018
Kuan Liu, Aurélien Bellet

* Long version of arXiv:1411.2374 (AISTATS 2015) 

  Access Paper or Ask Questions

A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization

Jul 18, 2018
Robin Vogel, Aurélien Bellet, Stéphan Clémençon

* PMLR 80 (2018) 5062-5071 
* 8 pages main paper, 22 pages with appendices, proceedings of ICML 2018 

  Access Paper or Ask Questions

A Distributed Frank-Wolfe Framework for Learning Low-Rank Matrices with the Trace Norm

May 11, 2018
Wenjie Zheng, Aurélien Bellet, Patrick Gallinari


  Access Paper or Ask Questions

Hiding in the Crowd: A Massively Distributed Algorithm for Private Averaging with Malicious Adversaries

Mar 27, 2018
Pierre Dellenbach, Aurélien Bellet, Jan Ramon

* 17 pages 

  Access Paper or Ask Questions

Personalized and Private Peer-to-Peer Machine Learning

Feb 19, 2018
Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, Marc Tommasi

* 20 pages, to appear in the Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018) 

  Access Paper or Ask Questions

Decentralized Collaborative Learning of Personalized Models over Networks

Feb 15, 2017
Paul Vanhaesebrouck, Aurélien Bellet, Marc Tommasi

* To appear in the Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017) 

  Access Paper or Ask Questions

Kernel Approximation Methods for Speech Recognition

Jan 13, 2017
Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aurélien Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, Fei Sha


  Access Paper or Ask Questions

Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions

Jun 08, 2016
Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon


  Access Paper or Ask Questions

Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics

Apr 19, 2016
Stéphan Clémençon, Aurélien Bellet, Igor Colin

* Journal of Machine Learning Research 17(76):1-36, 2016 
* To appear in Journal of Machine Learning Research. 34 pages. v2: minor correction to Theorem 4 and its proof, added 1 reference. v3: typo corrected in Proposition 3. v4: improved presentation, added experiments on model selection for clustering, fixed minor typos 

  Access Paper or Ask Questions

Extending Gossip Algorithms to Distributed Estimation of U-Statistics

Nov 17, 2015
Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon

* to be presented at NIPS 2015 

  Access Paper or Ask Questions

Similarity Learning for High-Dimensional Sparse Data

Oct 21, 2015
Kuan Liu, Aurélien Bellet, Fei Sha

* 14 pages. Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS 2015) 

  Access Paper or Ask Questions

How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets

Jun 17, 2015
Zhiyun Lu, Avner May, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurélien Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, Fei Sha


  Access Paper or Ask Questions

A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning

Jan 12, 2015
Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan, Fei Sha

* Extended version of the SIAM Data Mining 2015 paper 

  Access Paper or Ask Questions

Robustness and Generalization for Metric Learning

Sep 29, 2014
Aurélien Bellet, Amaury Habrard

* Neurocomputing,151(1):259-267, 2015 
* 16 pages, to appear in Neurocomputing 

  Access Paper or Ask Questions

Sparse Compositional Metric Learning

Apr 15, 2014
Yuan Shi, Aurélien Bellet, Fei Sha

* 18 pages. To be published in Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2014) 

  Access Paper or Ask Questions

A Survey on Metric Learning for Feature Vectors and Structured Data

Feb 12, 2014
Aurélien Bellet, Amaury Habrard, Marc Sebban

* Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new methods 

  Access Paper or Ask Questions

Supervised Metric Learning with Generalization Guarantees

Jul 23, 2013
Aurélien Bellet

* PhD thesis defended on December 11, 2012 (Laboratoire Hubert Curien, University of Saint-Etienne) 

  Access Paper or Ask Questions