Abstract:Graph Neural Networks (GNNs) have achieved promising results in various tasks such as node classification and graph classification. Recent studies find that GNNs are vulnerable to adversarial attacks. However, effective backdoor attacks on graphs are still an open problem. In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph. The backdoored GNNs trained on the poisoned graph will then be misled to predict test nodes to target class once attached with triggers. Though there are some initial efforts in graph backdoor attacks, our empirical analysis shows that they may require a large attack budget for effective backdoor attacks and the injected triggers can be easily detected and pruned. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget. To fully utilize the attack budget, we propose to deliberately select the nodes to inject triggers and target class labels in the poisoning phase. An adaptive trigger generator is deployed to obtain effective triggers that are difficult to be noticed. Extensive experiments on real-world datasets against various defense strategies demonstrate the effectiveness of our proposed method in conducting effective unnoticeable backdoor attacks.
Abstract:Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. %These identified sub-structures can provide interpretations of GNN's behavior. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and failing to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons for spurious explanations are identified: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations, \tianxiang{we propose a new explanation framework with an auxiliary alignment loss, which is theoretically proven to be optimizing a more faithful explanation objective intrinsically. Concretely for this alignment loss, a set of different perspectives are explored: anchor-based alignment, distributional alignment based on Gaussian mixture models, mutual-information-based alignment, etc. A comprehensive study is conducted both on the effectiveness of this new framework in terms of explanation faithfulness/consistency and on the advantages of these variants.
Abstract:Graph serves as a powerful tool for modeling data that has an underlying structure in non-Euclidean space, by encoding relations as edges and entities as nodes. Despite developments in learning from graph-structured data over the years, one obstacle persists: graph imbalance. Although several attempts have been made to target this problem, they are limited to considering only class-level imbalance. In this work, we argue that for graphs, the imbalance is likely to exist at the sub-class topology group level. Due to the flexibility of topology structures, graphs could be highly diverse, and learning a generalizable classification boundary would be difficult. Therefore, several majority topology groups may dominate the learning process, rendering others under-represented. To address this problem, we propose a new framework {\method} and design (1 a topology extractor, which automatically identifies the topology group for each instance with explicit memory cells, (2 a training modulator, which modulates the learning process of the target GNN model to prevent the case of topology-group-wise under-representation. {\method} can be used as a key component in GNN models to improve their performances under the data imbalance setting. Analyses on both topology-level imbalance and the proposed {\method} are provided theoretically, and we empirically verify its effectiveness with both node-level and graph-level classification as the target tasks.
Abstract:Graph neural networks (GNNs) have achieved great success in various graph problems. However, most GNNs are Message Passing Neural Networks (MPNNs) based on the homophily assumption, where nodes with the same label are connected in graphs. Real-world problems bring us heterophily problems, where nodes with different labels are connected in graphs. MPNNs fail to address the heterophily problem because they mix information from different distributions and are not good at capturing global patterns. Therefore, we investigate a novel Graph Memory Networks model on Heterophilous Graphs (HP-GMN) to the heterophily problem in this paper. In HP-GMN, local information and global patterns are learned by local statistics and the memory to facilitate the prediction. We further propose regularization terms to help the memory learn global information. We conduct extensive experiments to show that our method achieves state-of-the-art performance on both homophilous and heterophilous graphs.
Abstract:Graph Neural Networks (GNNs) have shown great ability in modeling graph-structured data for various domains. However, GNNs are known as black-box models that lack interpretability. Without understanding their inner working, we cannot fully trust them, which largely limits their adoption in high-stake scenarios. Though some initial efforts have been taken to interpret the predictions of GNNs, they mainly focus on providing post-hoc explanations using an additional explainer, which could misrepresent the true inner working mechanism of the target GNN. The works on self-explainable GNNs are rather limited. Therefore, we study a novel problem of learning prototype-based self-explainable GNNs that can simultaneously give accurate predictions and prototype-based explanations on predictions. We design a framework which can learn prototype graphs that capture representative patterns of each class as class-level explanations. The learned prototypes are also used to simultaneously make prediction for for a test instance and provide instance-level explanation. Extensive experiments on real-world and synthetic datasets show the effectiveness of the proposed framework for both prediction accuracy and explanation quality.
Abstract:Link prediction is an important task that has wide applications in various domains. However, the majority of existing link prediction approaches assume the given graph follows homophily assumption, and designs similarity-based heuristics or representation learning approaches to predict links. However, many real-world graphs are heterophilic graphs, where the homophily assumption does not hold, which challenges existing link prediction methods. Generally, in heterophilic graphs, there are many latent factors causing the link formation, and two linked nodes tend to be similar in one or two factors but might be dissimilar in other factors, leading to low overall similarity. Thus, one way is to learn disentangled representation for each node with each vector capturing the latent representation of a node on one factor, which paves a way to model the link formation in heterophilic graphs, resulting in better node representation learning and link prediction performance. However, the work on this is rather limited. Therefore, in this paper, we study a novel problem of exploring disentangled representation learning for link prediction on heterophilic graphs. We propose a novel framework DisenLink which can learn disentangled representations by modeling the link formation and perform factor-aware message-passing to facilitate link prediction. Extensive experiments on 13 real-world datasets demonstrate the effectiveness of DisenLink for link prediction on both heterophilic and hemophiliac graphs. Our codes are available at https://github.com/sjz5202/DisenLink
Abstract:In recent years, graph neural networks (GNNs) have achieved state-of-the-art performance for node classification. However, most existing GNNs would suffer from the graph imbalance problem. In many real-world scenarios, node classes are imbalanced, with some majority classes making up most parts of the graph. The message propagation mechanism in GNNs would further amplify the dominance of those majority classes, resulting in sub-optimal classification performance. In this work, we seek to address this problem by generating pseudo instances of minority classes to balance the training data, extending previous over-sampling-based techniques. This task is non-trivial, as those techniques are designed with the assumption that instances are independent. Neglection of relation information would complicate this oversampling process. Furthermore, the node classification task typically takes the semi-supervised setting with only a few labeled nodes, providing insufficient supervision for the generation of minority instances. Generated new nodes of low quality would harm the trained classifier. In this work, we address these difficulties by synthesizing new nodes in a constructed embedding space, which encodes both node attributes and topology information. Furthermore, an edge generator is trained simultaneously to model the graph structure and provide relations for new samples. To further improve the data efficiency, we also explore synthesizing mixed ``in-between'' nodes to utilize nodes from the majority class in this over-sampling process. Experiments on real-world datasets validate the effectiveness of our proposed framework.
Abstract:In this paper, we study the problem of conducting self-supervised learning for node representation learning on non-homophilous graphs. Existing self-supervised learning methods typically assume the graph is homophilous where linked nodes often belong to the same class or have similar features. However, such assumptions of homophily do not always hold true in real-world graphs. We address this problem by developing a decoupled self-supervised learning (DSSL) framework for graph neural networks. DSSL imitates a generative process of nodes and links from latent variable modeling of the semantic structure, which decouples different underlying semantics between different neighborhoods into the self-supervised node learning process. Our DSSL framework is agnostic to the encoders and does not need prefabricated augmentations, thus is flexible to different graphs. To effectively optimize the framework with latent variables, we derive the evidence lower-bound of the self-supervised objective and develop a scalable training algorithm with variational inference. We provide a theoretical analysis to justify that DSSL enjoys better downstream performance. Extensive experiments on various types of graph benchmarks demonstrate that our proposed framework can significantly achieve better performance compared with competitive self-supervised learning baselines.
Abstract:This work studies the problem of learning unbiased algorithms from biased feedback for recommender systems. We address this problem from both theoretical and algorithmic perspectives. Recent works in unbiased learning have advanced the state-of-the-art with various techniques such as meta-learning, knowledge distillation, and information bottleneck. Despite their empirical successes, most of them lack theoretical guarantee, forming non-negligible gaps between the theories and recent algorithms. To this end, we first view the unbiased recommendation problem from a distribution shift perspective. We theoretically analyze the generalization bounds of unbiased learning and suggest their close relations with recent unbiased learning objectives. Based on the theoretical analysis, we further propose a principled framework, Adversarial Self-Training (AST), for unbiased recommendation. Empirical evaluation on real-world and semi-synthetic datasets demonstrate the effectiveness of the proposed AST.
Abstract:Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. These identified sub-structures can provide interpretations of GNN's behavior. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. An inductive bias is deep-rooted in this framework: the same output cannot guarantee that two inputs are processed under the same rationale. Consequently, they have the danger of providing spurious explanations and fail to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address the issues, we propose to obtain more faithful and consistent explanations of GNNs. After a close examination on predictions of GNNs from the causality perspective, we attribute spurious explanations to two typical reasons: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Motivated by the observation that both confounding effects and diverse causal rationales are encoded in internal representations, we propose a simple yet effective countermeasure by aligning embeddings. This new objective can be incorporated into existing GNN explanation algorithms with no effort. We implement both a simplified version based on absolute distance and a distribution-aware version based on anchors. Experiments on $5$ datasets validate its effectiveness, and theoretical analysis shows that it is in effect optimizing a more faithful explanation objective in design, which further justifies the proposed approach.