Abstract:Recommendation systems play a vital role in many online platforms, with their primary objective being to satisfy and retain users. As directly optimizing user retention is challenging, multiple evaluation metrics are often employed. Existing methods generally formulate the optimization of these evaluation metrics as a multitask learning problem, but often overlook the fact that user preferences for different tasks are personalized and change over time. Identifying and tracking the evolution of user preferences can lead to better user retention. To address this issue, we introduce the concept of "user lifecycle", consisting of multiple stages characterized by users' varying preferences for different tasks. We propose a novel Stage-Adaptive Network (STAN) framework for modeling user lifecycle stages. STAN first identifies latent user lifecycle stages based on learned user preferences, and then employs the stage representation to enhance multi-task learning performance. Our experimental results using both public and industrial datasets demonstrate that the proposed model significantly improves multi-task prediction performance compared to state-of-the-art methods, highlighting the importance of considering user lifecycle stages in recommendation systems. Furthermore, online A/B testing reveals that our model outperforms the existing model, achieving a significant improvement of 3.05% in staytime per user and 0.88% in CVR. These results indicate that our approach effectively improves the overall efficiency of the multi-task recommendation system.
Abstract:Graph Neural Networks (GNNs) have shown great power in various domains. However, their predictions may inherit societal biases on sensitive attributes, limiting their adoption in real-world applications. Although many efforts have been taken for fair GNNs, most existing works just adopt widely used fairness techniques in machine learning to graph domains and ignore or don't have a thorough understanding of the message passing mechanism with fairness constraints, which is a distinctive feature of GNNs. To fill the gap, we propose a novel fairness-aware message passing framework GMMD, which is derived from an optimization problem that considers both graph smoothness and representation fairness. GMMD can be intuitively interpreted as encouraging a node to aggregate representations of other nodes from different sensitive groups while subtracting representations of other nodes from the same sensitive group, resulting in fair representations. We also provide a theoretical analysis to justify that GMMD can guarantee fairness, which leads to a simpler and theory-guided variant GMMD-S. Extensive experiments on graph benchmarks show that our proposed framework can significantly improve the fairness of various backbone GNN models while maintaining high accuracy.
Abstract:Graph Neural Networks (GNNs) have achieved great success in modeling graph-structured data. However, recent works show that GNNs are vulnerable to adversarial attacks which can fool the GNN model to make desired predictions of the attacker. In addition, training data of GNNs can be leaked under membership inference attacks. This largely hinders the adoption of GNNs in high-stake domains such as e-commerce, finance and bioinformatics. Though investigations have been made in conducting robust predictions and protecting membership privacy, they generally fail to simultaneously consider the robustness and membership privacy. Therefore, in this work, we study a novel problem of developing robust and membership privacy-preserving GNNs. Our analysis shows that Information Bottleneck (IB) can help filter out noisy information and regularize the predictions on labeled samples, which can benefit robustness and membership privacy. However, structural noises and lack of labels in node classification challenge the deployment of IB on graph-structured data. To mitigate these issues, we propose a novel graph information bottleneck framework that can alleviate structural noises with neighbor bottleneck. Pseudo labels are also incorporated in the optimization to minimize the gap between the predictions on the labeled set and unlabeled set for membership privacy. Extensive experiments on real-world datasets demonstrate that our method can give robust predictions and simultaneously preserve membership privacy.
Abstract:Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose {\method} by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, {\method} consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies, and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of {\method} in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.
Abstract:Graph Neural Networks (GNNs) have achieved state-of-the-art performance for link prediction. However, GNNs suffer from poor interpretability, which limits their adoptions in critical scenarios that require knowing why certain links are predicted. Despite various methods proposed for the explainability of GNNs, most of them are post-hoc explainers developed for explaining node classification. Directly adopting existing post-hoc explainers for explaining link prediction is sub-optimal because: (i) post-hoc explainers usually adopt another strategy or model to explain a target model, which could misinterpret the target model; and (ii) GNN explainers for node classification identify crucial subgraphs around each node for the explanation; while for link prediction, one needs to explain the prediction for each pair of nodes based on graph structure and node attributes. Therefore, in this paper, we study a novel problem of self-explainable GNNs for link prediction, which can simultaneously give accurate predictions and explanations. Concretely, we propose a new framework and it can find various $K$ important neighbors of one node to learn pair-specific representations for links from this node to other nodes. These $K$ different neighbors represent important characteristics of the node and model various factors for links from it. Thus, $K$ neighbors can provide explanations for the existence of links. Experiments on both synthetic and real-world datasets verify the effectiveness of the proposed framework for link prediction and explanation.
Abstract:Graph-structured data are pervasive in the real-world such as social networks, molecular graphs and transaction networks. Graph neural networks (GNNs) have achieved great success in representation learning on graphs, facilitating various downstream tasks. However, GNNs have several drawbacks such as lacking interpretability, can easily inherit the bias of the training data and cannot model the casual relations. Recently, counterfactual learning on graphs has shown promising results in alleviating these drawbacks. Various graph counterfactual learning approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs. To facilitate the development of this promising direction, in this survey, we categorize and comprehensively review papers on graph counterfactual learning. We divide existing methods into four categories based on research problems studied. For each category, we provide background and motivating examples, a general framework summarizing existing works and a detailed review of these works. We point out promising future research directions at the intersection of graph-structured data, counterfactual learning, and real-world applications. To offer a comprehensive view of resources for future studies, we compile a collection of open-source implementations, public datasets, and commonly-used evaluation metrics. This survey aims to serve as a ``one-stop-shop'' for building a unified understanding of graph counterfactual learning categories and current resources. We also maintain a repository for papers and resources and will keep updating the repository https://github.com/TimeLovercc/Awesome-Graph-Causal-Learning.
Abstract:Graph Neural Networks (GNNs) have achieved promising results in various tasks such as node classification and graph classification. Recent studies find that GNNs are vulnerable to adversarial attacks. However, effective backdoor attacks on graphs are still an open problem. In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph. The backdoored GNNs trained on the poisoned graph will then be misled to predict test nodes to target class once attached with triggers. Though there are some initial efforts in graph backdoor attacks, our empirical analysis shows that they may require a large attack budget for effective backdoor attacks and the injected triggers can be easily detected and pruned. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget. To fully utilize the attack budget, we propose to deliberately select the nodes to inject triggers and target class labels in the poisoning phase. An adaptive trigger generator is deployed to obtain effective triggers that are difficult to be noticed. Extensive experiments on real-world datasets against various defense strategies demonstrate the effectiveness of our proposed method in conducting effective unnoticeable backdoor attacks.
Abstract:Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. %These identified sub-structures can provide interpretations of GNN's behavior. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and failing to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons for spurious explanations are identified: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations, \tianxiang{we propose a new explanation framework with an auxiliary alignment loss, which is theoretically proven to be optimizing a more faithful explanation objective intrinsically. Concretely for this alignment loss, a set of different perspectives are explored: anchor-based alignment, distributional alignment based on Gaussian mixture models, mutual-information-based alignment, etc. A comprehensive study is conducted both on the effectiveness of this new framework in terms of explanation faithfulness/consistency and on the advantages of these variants.
Abstract:Graph serves as a powerful tool for modeling data that has an underlying structure in non-Euclidean space, by encoding relations as edges and entities as nodes. Despite developments in learning from graph-structured data over the years, one obstacle persists: graph imbalance. Although several attempts have been made to target this problem, they are limited to considering only class-level imbalance. In this work, we argue that for graphs, the imbalance is likely to exist at the sub-class topology group level. Due to the flexibility of topology structures, graphs could be highly diverse, and learning a generalizable classification boundary would be difficult. Therefore, several majority topology groups may dominate the learning process, rendering others under-represented. To address this problem, we propose a new framework {\method} and design (1 a topology extractor, which automatically identifies the topology group for each instance with explicit memory cells, (2 a training modulator, which modulates the learning process of the target GNN model to prevent the case of topology-group-wise under-representation. {\method} can be used as a key component in GNN models to improve their performances under the data imbalance setting. Analyses on both topology-level imbalance and the proposed {\method} are provided theoretically, and we empirically verify its effectiveness with both node-level and graph-level classification as the target tasks.
Abstract:Graph neural networks (GNNs) have achieved great success in various graph problems. However, most GNNs are Message Passing Neural Networks (MPNNs) based on the homophily assumption, where nodes with the same label are connected in graphs. Real-world problems bring us heterophily problems, where nodes with different labels are connected in graphs. MPNNs fail to address the heterophily problem because they mix information from different distributions and are not good at capturing global patterns. Therefore, we investigate a novel Graph Memory Networks model on Heterophilous Graphs (HP-GMN) to the heterophily problem in this paper. In HP-GMN, local information and global patterns are learned by local statistics and the memory to facilitate the prediction. We further propose regularization terms to help the memory learn global information. We conduct extensive experiments to show that our method achieves state-of-the-art performance on both homophilous and heterophilous graphs.