Abstract:Soft prompts have emerged as a powerful alternative to adapters in parameter-efficient fine-tuning (PEFT), enabling large language models (LLMs) to adapt to downstream tasks without architectural changes or parameter updates. While prior work has focused on stabilizing training via parameter interaction in small neural prompt encoders, their broader potential for transfer across languages remains unexplored. In this paper, we demonstrate that a prompt encoder can play a central role in improving performance on low-performing languages-those that achieve poor accuracy even under full-model fine-tuning. We introduce the Cross-Prompt Encoder (XPE), which combines a lightweight encoding architecture with multi-source training on typologically diverse languages - a design that enables the model to capture abstract and transferable patterns across languages. To complement XPE, we propose a Dual Soft Prompt mechanism that combines an encoder-based prompt with a directly trained standard soft prompt. This hybrid design proves especially effective for target languages that benefit from both broadly shared structure and language-specific alignment. Experiments on the SIB-200 benchmark reveal a consistent trade-off: XPE is most effective for low-performing languages, while hybrid variants offer broader adaptability across multilingual settings.
Abstract:Hyperparameter optimization (HPO) is a powerful technique for automating the tuning of machine learning (ML) models. However, in many real-world applications, accuracy is only one of multiple performance criteria that must be considered. Optimizing these objectives simultaneously on a complex and diverse search space remains a challenging task. In this paper, we propose MO-DEHB, an effective and flexible multi-objective (MO) optimizer that extends the recent evolutionary Hyperband method DEHB. We validate the performance of MO-DEHB using a comprehensive suite of 15 benchmarks consisting of diverse and challenging MO problems, including HPO, neural architecture search (NAS), and joint NAS and HPO, with objectives including accuracy, latency and algorithmic fairness. A comparative study against state-of-the-art MO optimizers demonstrates that MO-DEHB clearly achieves the best performance across our 15 benchmarks.