Abstract:We introduce a new efficient framework, the Unified Context Network (UniCon), for robust active speaker detection (ASD). Traditional methods for ASD usually operate on each candidate's pre-cropped face track separately and do not sufficiently consider the relationships among the candidates. This potentially limits performance, especially in challenging scenarios with low-resolution faces, multiple candidates, etc. Our solution is a novel, unified framework that focuses on jointly modeling multiple types of contextual information: spatial context to indicate the position and scale of each candidate's face, relational context to capture the visual relationships among the candidates and contrast audio-visual affinities with each other, and temporal context to aggregate long-term information and smooth out local uncertainties. Based on such information, our model optimizes all candidates in a unified process for robust and reliable ASD. A thorough ablation study is performed on several challenging ASD benchmarks under different settings. In particular, our method outperforms the state-of-the-art by a large margin of about 15% mean Average Precision (mAP) absolute on two challenging subsets: one with three candidate speakers, and the other with faces smaller than 64 pixels. Together, our UniCon achieves 92.0% mAP on the AVA-ActiveSpeaker validation set, surpassing 90% for the first time on this challenging dataset at the time of submission. Project website: https://unicon-asd.github.io/.
Abstract:Boundary based blackbox attack has been recognized as practical and effective, given that an attacker only needs to access the final model prediction. However, the query efficiency of it is in general high especially for high dimensional image data. In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency. In particular, we propose a theoretical framework to analyze and show three key characteristics to improve the query efficiency. We prove that there exists an optimal scale for projective gradient estimation. Our framework also explains the satisfactory performance achieved by existing boundary black-box attacks. Based on our theoretical framework, we propose Progressive-Scale enabled projective Boundary Attack (PSBA) to improve the query efficiency via progressive scaling techniques. In particular, we employ Progressive-GAN to optimize the scale of projections, which we call PSBA-PGAN. We evaluate our approach on both spatial and frequency scales. Extensive experiments on MNIST, CIFAR-10, CelebA, and ImageNet against different models including a real-world face recognition API show that PSBA-PGAN significantly outperforms existing baseline attacks in terms of query efficiency and attack success rate. We also observe relatively stable optimal scales for different models and datasets. The code is publicly available at https://github.com/AI-secure/PSBA.
Abstract:Combinatorial Optimization (CO) has been a long-standing challenging research topic featured by its NP-hard nature. Traditionally such problems are approximately solved with heuristic algorithms which are usually fast but may sacrifice the solution quality. Currently, machine learning for combinatorial optimization (MLCO) has become a trending research topic, but most existing MLCO methods treat CO as a single-level optimization by directly learning the end-to-end solutions, which are hard to scale up and mostly limited by the capacity of ML models given the high complexity of CO. In this paper, we propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph (e.g. add, delete or modify edges in a graph), fused with a lower-level heuristic algorithm solving on the optimized graph. Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity. The experiments and results on several popular CO problems like Directed Acyclic Graph scheduling, Graph Edit Distance and Hamiltonian Cycle Problem show its effectiveness over manually designed heuristics and single-level learning methods.
Abstract:Scheduling computational tasks represented by directed acyclic graphs (DAGs) is challenging because of its complexity. Conventional scheduling algorithms rely heavily on simple heuristics such as shortest job first (SJF) and critical path (CP), and are often lacking in scheduling quality. In this paper, we present a novel learning-based approach to scheduling DAG tasks. The algorithm employs a reinforcement learning agent to iteratively add directed edges to the DAG, one at a time, to enforce ordering (i.e., priorities of execution and resource allocation) of "tricky" job nodes. By doing so, the original DAG scheduling problem is dramatically reduced to a much simpler proxy problem, on which heuristic scheduling algorithms such as SJF and CP can be efficiently improved. Our approach can be easily applied to any existing heuristic scheduling algorithms. On the benchmark dataset of TPC-H, we show that our learning based approach can significantly improve over popular heuristic algorithms and consistently achieves the best performance among several methods under a variety of settings.
Abstract:Gradient estimation and vector space projection have been studied as two distinct topics. We aim to bridge the gap between the two by investigating how to efficiently estimate gradient based on a projected low-dimensional space. We first provide lower and upper bounds for gradient estimation under both linear and nonlinear projections, and outline checkable sufficient conditions under which one is better than the other. Moreover, we analyze the query complexity for the projection-based gradient estimation and present a sufficient condition for query-efficient estimators. Built upon our theoretic analysis, we propose a novel query-efficient Nonlinear Gradient Projection-based Boundary Blackbox Attack (NonLinear-BA). We conduct extensive experiments on four image datasets: ImageNet, CelebA, CIFAR-10, and MNIST, and show the superiority of the proposed methods compared with the state-of-the-art baselines. In particular, we show that the projection-based boundary blackbox attacks are able to achieve much smaller magnitude of perturbations with 100% attack success rate based on efficient queries. Both linear and nonlinear projections demonstrate their advantages under different conditions. We also evaluate NonLinear-BA against the commercial online API MEGVII Face++, and demonstrate the high blackbox attack performance both quantitatively and qualitatively. The code is publicly available at https://github.com/AI-secure/NonLinear-BA.
Abstract:Lip reading, also known as visual speech recognition, aims to recognize the speech content from videos by analyzing the lip dynamics. There have been several appealing progress in recent years, benefiting much from the rapidly developed deep learning techniques and the recent large-scale lip-reading datasets. Most existing methods obtained high performance by constructing a complex neural network, together with several customized training strategies which were always given in a very brief description or even shown only in the source code. We find that making proper use of these strategies could always bring exciting improvements without changing much of the model. Considering the non-negligible effects of these strategies and the existing tough status to train an effective lip reading model, we perform a comprehensive quantitative study and comparative analysis, for the first time, to show the effects of several different choices for lip reading. By only introducing some easy-to-get refinements to the baseline pipeline, we obtain an obvious improvement of the performance from 83.7% to 88.4% and from 38.2% to 55.7% on two largest public available lip reading datasets, LRW and LRW-1000, respectively. They are comparable and even surpass the existing state-of-the-art results.
Abstract:A key challenge in solving a combinatorial optimization problem is how to guide the agent (i.e., solver) to efficiently explore the enormous search space. Conventional approaches often rely on enumeration (e.g., exhaustive, random, or tabu search) or have to restrict the exploration to rather limited regions (e.g., a single path as in iterative algorithms). In this paper, we show it is possible to use machine learning to speedup the exploration. In particular, a value network is trained to evaluate solution candidates, which provides a useful structure (i.e., an approximate value surface) over the search space; this value network is then used to screen solutions to help a black-box optimization agent to initialize or restart so as to navigate through the search space towards desirable solutions. Experiments demonstrate that the proposed ``Learn to Restart'' algorithm achieves promising results in solving Capacitated Vehicle Routing Problems (CVRPs).
Abstract:Several sampling algorithms with variance reduction have been proposed for accelerating the training of Graph Convolution Networks (GCNs). However, due to the intractable computation of optimal sampling distribution, these sampling algorithms are suboptimal for GCNs and are not applicable to more general graph neural networks (GNNs) where the message aggregator contains learned weights rather than fixed weights, such as Graph Attention Networks (GAT). The fundamental reason is that the embeddings of the neighbors or learned weights involved in the optimal sampling distribution are changing during the training and not known a priori, but only partially observed when sampled, thus making the derivation of an optimal variance reduced samplers non-trivial. In this paper, we formulate the optimization of the sampling variance as an adversary bandit problem, where the rewards are related to the node embeddings and learned weights, and can vary constantly. Thus a good sampler needs to acquire variance information about more neighbors (exploration) while at the same time optimizing the immediate sampling variance (exploit). We theoretically show that our algorithm asymptotically approaches the optimal variance within a factor of 3. We show the efficiency and effectiveness of our approach on multiple datasets.
Abstract:We examine the \emph{submodular maximum coverage problem} (SMCP), which is related to a wide range of applications. We provide the first variational approximation for this problem based on the Nemhauser divergence, and show that it can be solved efficiently using variational optimization. The algorithm alternates between two steps: (1) an E step that estimates a variational parameter to maximize a parameterized \emph{modular} lower bound; and (2) an M step that updates the solution by solving the local approximate problem. We provide theoretical analysis on the performance of the proposed approach and its curvature-dependent approximate factor, and empirically evaluate it on a number of public data sets and several application tasks.
Abstract:Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on model's final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.