Abstract:Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration. To address these issues, we propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL. Specifically, we present a wavelet-based conditional diffusion model (WCDM) that leverages the generative power of diffusion models to produce results with satisfactory perceptual fidelity. Additionally, it also takes advantage of the strengths of wavelet transformation to greatly accelerate inference and reduce computational resource usage without sacrificing information. To avoid chaotic content and diversity, we perform both forward diffusion and reverse denoising in the training phase of WCDM, enabling the model to achieve stable denoising and reduce randomness during inference. Moreover, we further design a high-frequency restoration module (HFRM) that utilizes the vertical and horizontal details of the image to complement the diagonal information for better fine-grained restoration. Extensive experiments on publicly available real-world benchmarks demonstrate that our method outperforms the existing state-of-the-art methods both quantitatively and visually, and it achieves remarkable improvements in efficiency compared to previous diffusion-based methods. In addition, we empirically show that the application for low-light face detection also reveals the latent practical values of our method.
Abstract:Deep learning-based approaches have achieved remarkable performance in single-image denoising. However, training denoising models typically requires a large amount of data, which can be difficult to obtain in real-world scenarios. Furthermore, synthetic noise used in the past has often produced significant differences compared to real-world noise due to the complexity of the latter and the poor modeling ability of noise distributions of Generative Adversarial Network (GAN) models, resulting in residual noise and artifacts within denoising models. To address these challenges, we propose a novel method for synthesizing realistic noise using diffusion models. This approach enables us to generate large amounts of high-quality data for training denoising models by controlling camera settings to simulate different environmental conditions and employing guided multi-scale content information to ensure that our method is more capable of generating real noise with multi-frequency spatial correlations. In particular, we design an inversion mechanism for the setting, which extends our method to more public datasets without setting information. Based on the noise dataset we synthesized, we have conducted sufficient experiments on multiple benchmarks, and experimental results demonstrate that our method outperforms state-of-the-art methods on multiple benchmarks and metrics, demonstrating its effectiveness in synthesizing realistic noise for training denoising models.
Abstract:Efficient deep learning-based approaches have achieved remarkable performance in single image super-resolution. However, recent studies on efficient super-resolution have mainly focused on reducing the number of parameters and floating-point operations through various network designs. Although these methods can decrease the number of parameters and floating-point operations, they may not necessarily reduce actual running time. To address this issue, we propose a novel multi-stage lightweight network boosting method, which can enable lightweight networks to achieve outstanding performance. Specifically, we leverage enhanced high-resolution output as additional supervision to improve the learning ability of lightweight student networks. Upon convergence of the student network, we further simplify our network structure to a more lightweight level using reparameterization techniques and iterative network pruning. Meanwhile, we adopt an effective lightweight network training strategy that combines multi-anchor distillation and progressive learning, enabling the lightweight network to achieve outstanding performance. Ultimately, our proposed method achieves the fastest inference time among all participants in the NTIRE 2023 efficient super-resolution challenge while maintaining competitive super-resolution performance. Additionally, extensive experiments are conducted to demonstrate the effectiveness of the proposed components. The results show that our approach achieves comparable performance in representative dataset DIV2K, both qualitatively and quantitatively, with faster inference and fewer number of network parameters.
Abstract:This paper proposes a hybrid synthesis method for multi-exposure image fusion taken by hand-held cameras. Motions either due to the shaky camera or caused by dynamic scenes should be compensated before any content fusion. Any misalignment can easily cause blurring/ghosting artifacts in the fused result. Our hybrid method can deal with such motions and maintain the exposure information of each input effectively. In particular, the proposed method first applies optical flow for a coarse registration, which performs well with complex non-rigid motion but produces deformations at regions with missing correspondences. The absence of correspondences is due to the occlusions of scene parallax or the moving contents. To correct such error registration, we segment images into superpixels and identify problematic alignments based on each superpixel, which is further aligned by PatchMatch. The method combines the efficiency of optical flow and the accuracy of PatchMatch. After PatchMatch correction, we obtain a fully aligned image stack that facilitates a high-quality fusion that is free from blurring/ghosting artifacts. We compare our method with existing fusion algorithms on various challenging examples, including the static/dynamic, the indoor/outdoor and the daytime/nighttime scenes. Experiment results demonstrate the effectiveness and robustness of our method.
Abstract:We study the problem of estimating optical flow from event cameras. One important issue is how to build a high-quality event-flow dataset with accurate event values and flow labels. Previous datasets are created by either capturing real scenes by event cameras or synthesizing from images with pasted foreground objects. The former case can produce real event values but with calculated flow labels, which are sparse and inaccurate. The later case can generate dense flow labels but the interpolated events are prone to errors. In this work, we propose to render a physically correct event-flow dataset using computer graphics models. In particular, we first create indoor and outdoor 3D scenes by Blender with rich scene content variations. Second, diverse camera motions are included for the virtual capturing, producing images and accurate flow labels. Third, we render high-framerate videos between images for accurate events. The rendered dataset can adjust the density of events, based on which we further introduce an adaptive density module (ADM). Experiments show that our proposed dataset can facilitate event-flow learning, whereas previous approaches when trained on our dataset can improve their performances constantly by a relatively large margin. In addition, event-flow pipelines when equipped with our ADM can further improve performances.
Abstract:Traditional image stitching approaches tend to leverage increasingly complex geometric features (point, line, edge, etc.) for better performance. However, these hand-crafted features are only suitable for specific natural scenes with adequate geometric structures. In contrast, deep stitching schemes overcome the adverse conditions by adaptively learning robust semantic features, but they cannot handle large-parallax cases due to homography-based registration. To solve these issues, we propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique. First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion. It provides accurate alignment for overlapping regions and shape preservation for non-overlapping regions by joint optimization concerning alignment and distortion. Subsequently, to improve the generalization capability, we design a simple but effective iterative strategy to enhance the warp adaption in cross-dataset and cross-resolution applications. Finally, to further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks. Compared with existing methods, our solution is parallax-tolerant and free from laborious designs of complicated geometric features for specific scenes. Extensive experiments show our superiority over the SoTA methods, both quantitatively and qualitatively. The code will be available at https://github.com/nie-lang/UDIS2.
Abstract:Existing homography and optical flow methods are erroneous in challenging scenes, such as fog, rain, night, and snow because the basic assumptions such as brightness and gradient constancy are broken. To address this issue, we present an unsupervised learning approach that fuses gyroscope into homography and optical flow learning. Specifically, we first convert gyroscope readings into motion fields named gyro field. Second, we design a self-guided fusion module (SGF) to fuse the background motion extracted from the gyro field with the optical flow and guide the network to focus on motion details. Meanwhile, we propose a homography decoder module (HD) to combine gyro field and intermediate results of SGF to produce the homography. To the best of our knowledge, this is the first deep learning framework that fuses gyroscope data and image content for both deep homography and optical flow learning. To validate our method, we propose a new dataset that covers regular and challenging scenes. Experiments show that our method outperforms the state-of-the-art methods in both regular and challenging scenes.
Abstract:Neural Architecture Search (NAS) is an automatic technique that can search for well-performed architectures for a specific task. Although NAS surpasses human-designed architecture in many fields, the high computational cost of architecture evaluation it requires hinders its development. A feasible solution is to directly evaluate some metrics in the initial stage of the architecture without any training. NAS without training (WOT) score is such a metric, which estimates the final trained accuracy of the architecture through the ability to distinguish different inputs in the activation layer. However, WOT score is not an atomic metric, meaning that it does not represent a fundamental indicator of the architecture. The contributions of this paper are in three folds. First, we decouple WOT into two atomic metrics which represent the distinguishing ability of the network and the number of activation units, and explore better combination rules named (Distinguishing Activation Score) DAS. We prove the correctness of decoupling theoretically and confirmed the effectiveness of the rules experimentally. Second, in order to improve the prediction accuracy of DAS to meet practical search requirements, we propose a fast training strategy. When DAS is used in combination with the fast training strategy, it yields more improvements. Third, we propose a dataset called Darts-training-bench (DTB), which fills the gap that no training states of architecture in existing datasets. Our proposed method has 1.04$\times$ - 1.56$\times$ improvements on NAS-Bench-101, Network Design Spaces, and the proposed DTB.
Abstract:This paper proposes a deep recurrent Rotation Averaging Graph Optimizer (RAGO) for Multiple Rotation Averaging (MRA). Conventional optimization-based methods usually fail to produce accurate results due to corrupted and noisy relative measurements. Recent learning-based approaches regard MRA as a regression problem, while these methods are sensitive to initialization due to the gauge freedom problem. To handle these problems, we propose a learnable iterative graph optimizer minimizing a gauge-invariant cost function with an edge rectification strategy to mitigate the effect of inaccurate measurements. Our graph optimizer iteratively refines the global camera rotations by minimizing each node's single rotation objective function. Besides, our approach iteratively rectifies relative rotations to make them more consistent with the current camera orientations and observed relative rotations. Furthermore, we employ a gated recurrent unit to improve the result by tracing the temporal information of the cost graph. Our framework is a real-time learning-to-optimize rotation averaging graph optimizer with a tiny size deployed for real-world applications. RAGO outperforms previous traditional and deep methods on real-world and synthetic datasets. The code is available at https://github.com/sfu-gruvi-3dv/RAGO
Abstract:Homography estimation is erroneous in the case of large-baseline due to the low image overlay and limited receptive field. To address it, we propose a progressive estimation strategy by converting large-baseline homography into multiple intermediate ones, cumulatively multiplying these intermediate items can reconstruct the initial homography. Meanwhile, a semi-supervised homography identity loss, which consists of two components: a supervised objective and an unsupervised objective, is introduced. The first supervised loss is acting to optimize intermediate homographies, while the second unsupervised one helps to estimate a large-baseline homography without photometric losses. To validate our method, we propose a large-scale dataset that covers regular and challenging scenes. Experiments show that our method achieves state-of-the-art performance in large-baseline scenes while keeping competitive performance in small-baseline scenes. Code and dataset are available at https://github.com/megvii-research/LBHomo.