Charlie




Abstract:Phase-time arrays, which integrate phase shifters (PSs) and true-time delays (TTDs), have emerged as a cost-effective architecture for generating frequency-dependent rainbow beams in wideband sensing and localization. This paper proposes an end-to-end deep learning-based scheme that simultaneously designs the rainbow beams and estimates user positions. Treating the PS and TTD coefficients as trainable variables allows the network to synthesize task-oriented beams that maximize localization accuracy. A lightweight fully connected module then recovers the user's angle-range coordinates from its feedback of the maximum quantized received power and its corresponding subcarrier index after a single downlink transmission. Compared with existing analytical and learning-based schemes, the proposed method reduces overhead by an order of magnitude and delivers consistently lower two-dimensional positioning error.




Abstract:Integrated sensing and communication (ISAC) systems demand precise and efficient target localization, a task challenged by rich multipath propagation in complex wireless environments. This paper introduces MARBLE-Net (Multipath-Aware Rainbow Beam Learning Network), a deep learning framework that jointly optimizes the analog beamforming parameters of a frequency-dependent rainbow beam and a neural localization network for high-accuracy position estimation. By treating the phase-shifter (PS) and true-time-delay (TTD) parameters as learnable weights, the system adaptively refines its sensing beam to exploit environment-specific multipath characteristics. A structured multi-stage training strategy is proposed to ensure stable convergence and effective end-to-end optimization. Simulation results show that MARBLE-Net outperforms both a fixed-beam deep learning baseline (RaiNet) and a traditional k-nearest neighbors (k-NN) method, reducing localization error by more than 50\% in a multipath-rich scene. Moreover, the results reveal a nuanced interaction with multipath propagation: while confined uni-directional multipath degrades accuracy, structured and directional multipath can be effectively exploited to achieve performance surpassing even line-of-sight (LoS) conditions.
Abstract:Most existing semantic communication systems employ analog modulation, which is incompatible with modern digital communication systems. Although several digital transmission approaches have been proposed to address this issue, an end-to-end bit-level method that is compatible with arbitrary modulation formats, robust to channel noise, and free from quantization errors remains lacking. To this end, we propose BitSemCom, a novel bit-level semantic communication framework that realizes true joint source-channel coding (JSCC) at the bit level. Specifically, we introduce a modular learnable bit mapper that establishes a probabilistic mapping between continuous semantic features and discrete bits, utilizing the Gumbel-Softmax trick to enable differentiable bit generation. Simulation results on image transmission demonstrate that BitSemCom achieves both competitive performance and superior robustness compared to traditional separate source-channel coding (SSCC) schemes, and outperforms deep learning based JSCC with uniform 1-bit quantization, validating the effectiveness of the learnable bit mapper. Despite these improvements, the bit mapper adds only 0.42% parameters and 0.09% computational complexity, making BitSemCom a lightweight and practical solution for real-world semantic communication.
Abstract:Millimeter-wave (mmWave) OFDM radar equipped with rainbow beamforming, enabled by joint phase-time arrays (JPTAs), provides wide-angle coverage and is well-suited for fast real-time target detection and tracking. However, accurate detection of multiple closely spaced targets remains a key challenge for conventional signal processing pipelines, particularly those relying on constant false alarm rate (CFAR) detectors. This paper presents CFARNet, a learning-based processing framework that replaces CFAR with a convolutional neural network (CNN) for peak detection in the angle-Doppler domain. The network predicts target subcarrier indices, which guide angle estimation via a known frequency-angle mapping and enable high-resolution range and velocity estimation using the MUSIC algorithm. Extensive simulations demonstrate that CFARNet significantly outperforms a CFAR+MUSIC baseline, especially under low transmit power and dense multi-target conditions. The proposed method offers superior angular resolution, enhanced robustness in low-SNR scenarios, and improved computational efficiency, highlighting the potential of data-driven approaches for high-resolution mmWave radar sensing.
Abstract:Massive multiple-input multiple-output (MIMO) technology is a key enabler of modern wireless communication systems, which demand accurate downlink channel state information (CSI) for optimal performance. Although deep learning (DL) has shown great potential in improving CSI feedback, most existing approaches fail to exploit the semantic relationship between CSI and other related channel metrics. In this paper, we propose SemCSINet, a semantic-aware Transformer-based framework that incorporates Channel Quality Indicator (CQI) into the CSI feedback process. By embedding CQI information and leveraging a joint coding-modulation (JCM) scheme, SemCSINet enables efficient, digital-friendly CSI feedback under noisy feedback channels. Experimental results on DeepMIMO datasets show that SemCSINet significantly outperforms conventional methods, particularly in scenarios with low signal-to-noise ratio (SNR) and low compression ratios (CRs), highlighting the effectiveness of semantic embedding in enhancing CSI reconstruction accuracy and system robustness.




Abstract:Joint phase-time arrays (JPTA) emerge as a cost-effective and energy-efficient architecture for frequency-dependent beamforming in wideband communications by utilizing both true-time delay units and phase shifters. This paper exploits the potential of JPTA to simultaneously serve multiple users in both near- and far-field regions with a single radio frequency chain. The goal is to jointly optimize JPTA-based beamforming and subband allocation to maximize overall system performance. To this end, we formulate a system utility maximization problem, including sum-rate maximization and proportional fairness as special cases. We develop a 3-step alternating optimization (AO) algorithm and an efficient deep learning (DL) method for this problem. The DL approach includes a 2-layer convolutional neural network, a 3-layer graph attention network (GAT), and a normalization module for resource and beamforming optimization. The GAT efficiently captures the interactions between resource allocation and analog beamformers. Simulation results confirm that JPTA outperforms conventional phased arrays (PA) in enhancing user rate and strikes a good balance between PA and fully-digital approach in energy efficiency. Employing a logarithmic utility function for user rates ensures greater fairness than maximizing sum-rates. Furthermore, the DL network achieves comparable performance to the AO approach, while having orders of magnitude lower computational complexity.




Abstract:This paper presents a novel approach to designing millimeter-wave (mmWave) cellular communication systems, based on joint phase time array (JPTA) radio frequency (RF) frontend architecture. JPTA architecture comprises time-delay components appended to conventional phase shifters, which offer extra degrees of freedom to be exploited for designing frequency-selective analog beams. Hence, a mmWave device equipped with JPTA can receive and transmit signals in multiple directions in a single time slot per RF chain, one direction per frequency subband, which alleviates the traditional constraint of one analog beam per transceiver chain per time slot. The utilization of subband-specific analog beams offers a new opportunity in designing mmWave systems, allowing for enhanced cell capacity and reduced pilot overhead. To understand the practical feasibility of JPTA, a few challenges and system design considerations are discussed in relation to the performance and complexity of the JPTA systems. For example, frequency-selective beam gain losses are present for the subband analog beams, e.g., up to 1 dB losses for 2 subband cases, even with the state-of-the-art JPTA delay and phase optimization methods. Despite these side effects, system-level analysis reveals that the JPTA system is capable of improving cell capacity: the 5%-tile throughput by up to 65%.
Abstract:High-frequency wide-bandwidth cellular communications over mmW and sub-THz offer the opportunity for high data rates, however, it also presents high pathloss, resulting in limited coverage. To mitigate the coverage limitations, high-gain beamforming is essential. Implementation of beamforming involves a large number of antennas, which introduces analog beam constraint, i.e., only one frequency-flat beam is generated per transceiver chain (TRx). Recently introduced joint phase-time array (JPTA) architecture, which utilizes both true time delay (TTD) units and phase shifters (PSs), alleviates analog beam constraint by creating multiple frequency-dependent beams per TRx, for scheduling multiple users at different directions in a frequency-division manner. One class of previous studies offered solutions with "rainbow" beams, which tend to allocate a small bandwidth per beam direction. Another class focused on uniform linear array (ULA) antenna architecture, whose frequency-dependent beams were designed along a single axis of either azimuth or elevation direction. In this paper, we present a novel 3D beamforming codebook design aimed at maximizing beamforming gain to steer radiation toward desired azimuth and elevation directions, as well as across sub-bands partitioned according to scheduled users' bandwidth requirements. We provide both analytical solutions and iterative algorithms to design the PSs and TTD units for a desired subband beam pattern. Through simulations of the beamforming gain, we observe that our proposed solutions outperform the state-of-the-art solutions reported elsewhere.
Abstract:Hybrid beamforming is an attractive solution to build cost-effective and energy-efficient transceivers for millimeter-wave and terahertz systems. However, conventional hybrid beamforming techniques rely on analog components that generate a frequency flat response such as phase-shifters and switches, which limits the flexibility of the achievable beam patterns. As a novel alternative, this paper proposes a new class of hybrid beamforming called Joint phase-time arrays (JPTA), that additionally use true-time delay elements in the analog beamforming to create frequency-dependent analog beams. Using as an example two important frequency-dependent beam behaviors, the numerous benefits of such flexibility are exemplified. Subsequently, the JPTA beamformer design problem to generate any desired beam behavior is formulated and near-optimal algorithms to the problem are proposed. Simulations show that the proposed algorithms can outperform heuristics solutions for JPTA beamformer update. Furthermore, it is shown that JPTA can achieve the two exemplified beam behaviors with one radio-frequency chain, while conventional hybrid beamforming requires the radio-frequency chains to scale with the number of antennas to achieve similar performance. Finally, a wide range of problems to further tap into the potential of JPTA are also listed as future directions.




Abstract:Beam management (BM), i.e., the process of finding and maintaining a suitable transmit and receive beam pair, can be challenging, particularly in highly dynamic scenarios. Side-information, e.g., orientation, from on-board sensors can assist the user equipment (UE) BM. In this work, we use the orientation information coming from the inertial measurement unit (IMU) for effective BM. We use a data-driven strategy that fuses the reference signal received power (RSRP) with orientation information using a recurrent neural network (RNN). Simulation results show that the proposed strategy performs much better than the conventional BM and an orientation-assisted BM strategy that utilizes particle filter in another study. Specifically, the proposed data-driven strategy improves the beam-prediction accuracy up to 34% and increases mean RSRP by up to 4.2 dB when the UE orientation changes quickly.