Abstract:With the rapid growth of Web-based academic publications, more and more papers are being published annually, making it increasingly difficult to find relevant prior work. Citation prediction aims to automatically suggest appropriate references, helping scholars navigate the expanding scientific literature. Here we present \textbf{CiteRAG}, the first comprehensive retrieval-augmented generation (RAG)-integrated benchmark for evaluating large language models on academic citation prediction, featuring a multi-level retrieval strategy, specialized retrievers, and generators. Our benchmark makes four core contributions: (1) We establish two instances of the citation prediction task with different granularity. Task 1 focuses on coarse-grained list-specific citation prediction, while Task 2 targets fine-grained position-specific citation prediction. To enhance these two tasks, we build a dataset containing 7,267 instances for Task 1 and 8,541 instances for Task 2, enabling comprehensive evaluation of both retrieval and generation. (2) We construct a three-level large-scale corpus with 554k papers spanning many major subfields, using an incremental pipeline. (3) We propose a multi-level hybrid RAG approach for citation prediction, fine-tuning embedding models with contrastive learning to capture complex citation relationships, paired with specialized generation models. (4) We conduct extensive experiments across state-of-the-art language models, including closed-source APIs, open-source models, and our fine-tuned generators, demonstrating the effectiveness of our framework. Our open-source toolkit enables reproducible evaluation and focuses on academic literature, providing the first comprehensive evaluation framework for citation prediction and serving as a methodological template for other scientific domains. Our source code and data are released at https://github.com/LQgdwind/CiteRAG.
Abstract:Reasoning models excel at complex tasks such as coding and mathematics, yet their inference is often slow and token-inefficient. To improve the inference efficiency, post-training quantization (PTQ) usually comes with the cost of large accuracy drops, especially for reasoning tasks under low-bit settings. In this study, we present a systematic empirical study of quantization-aware training (QAT) for reasoning models. Our key findings include: (1) Knowledge distillation is a robust objective for reasoning models trained via either supervised fine-tuning or reinforcement learning; (2) PTQ provides a strong initialization for QAT, improving accuracy while reducing training cost; (3) Reinforcement learning remains feasible for quantized models given a viable cold start and yields additional gains; and (4) Aligning the PTQ calibration domain with the QAT training domain accelerates convergence and often improves the final accuracy. Finally, we consolidate these findings into an optimized workflow (Reasoning-QAT), and show that it consistently outperforms state-of-the-art PTQ methods across multiple LLM backbones and reasoning datasets. For instance, on Qwen3-0.6B, it surpasses GPTQ by 44.53% on MATH-500 and consistently recovers performance in the 2-bit regime.




Abstract:Multimodal Large Language Models (MLLMs) have demonstrated significant potential to advance a broad range of domains. However, current benchmarks for evaluating MLLMs primarily emphasize general knowledge and vertical step-by-step reasoning typical of STEM disciplines, while overlooking the distinct needs and potential of the Humanities and Social Sciences (HSS). Tasks in the HSS domain require more horizontal, interdisciplinary thinking and a deep integration of knowledge across related fields, which presents unique challenges for MLLMs, particularly in linking abstract concepts with corresponding visual representations. Addressing this gap, we present HSSBench, a dedicated benchmark designed to assess the capabilities of MLLMs on HSS tasks in multiple languages, including the six official languages of the United Nations. We also introduce a novel data generation pipeline tailored for HSS scenarios, in which multiple domain experts and automated agents collaborate to generate and iteratively refine each sample. HSSBench contains over 13,000 meticulously designed samples, covering six key categories. We benchmark more than 20 mainstream MLLMs on HSSBench and demonstrate that it poses significant challenges even for state-of-the-art models. We hope that this benchmark will inspire further research into enhancing the cross-disciplinary reasoning abilities of MLLMs, especially their capacity to internalize and connect knowledge across fields.