Abstract:As a fundamental task in Information Retrieval and Computational Linguistics, sentence representation has profound implications for a wide range of practical applications such as text clustering, content analysis, question-answering systems, and web search. Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field, particularly through unsupervised embedding derivation methods centered on discriminative PLMs like BERT. However, due to time and computational constraints, few efforts have attempted to integrate unsupervised sentence representation with generative PLMs, which typically possess much larger parameter sizes. Given that state-of-the-art models in both academia and industry are predominantly based on generative architectures, there is a pressing need for an efficient unsupervised text representation framework tailored to decoder-only PLMs. To address this concern, we propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models. Compared to existing strategies, CSE-SFP requires only a single forward pass to perform effective unsupervised contrastive learning. Rigorous experimentation demonstrates that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption. Furthermore, we introduce two ratio metrics that jointly assess alignment and uniformity, thereby providing a more robust means for evaluating the semantic spatial properties of encoding models.
Abstract:Medical Visual Question Answering (Med-VQA) is a very important task in healthcare industry, which answers a natural language question with a medical image. Existing VQA techniques in information systems can be directly applied to solving the task. However, they often suffer from (i) the data insufficient problem, which makes it difficult to train the state of the arts (SOTAs) for the domain-specific task, and (ii) the reproducibility problem, that many existing models have not been thoroughly evaluated in a unified experimental setup. To address these issues, this paper develops a Benchmark Evaluation SysTem for Medical Visual Question Answering, denoted by BESTMVQA. Given self-collected clinical data, our system provides a useful tool for users to automatically build Med-VQA datasets, which helps overcoming the data insufficient problem. Users also can conveniently select a wide spectrum of SOTA models from our model library to perform a comprehensive empirical study. With simple configurations, our system automatically trains and evaluates the selected models over a benchmark dataset, and reports the comprehensive results for users to develop new techniques or perform medical practice. Limitations of existing work are overcome (i) by the data generation tool, which automatically constructs new datasets from unstructured clinical data, and (ii) by evaluating SOTAs on benchmark datasets in a unified experimental setup. The demonstration video of our system can be found at https://youtu.be/QkEeFlu1x4A. Our code and data will be available soon.