Keeping track of how states and relations of entities change as a text or dialog unfolds is a key prerequisite to discourse understanding. Despite this fact, there have been few systematic investigations into the ability of large language models (LLMs) to track discourse entities. In this work, we present a task to probe to what extent a language model can infer the final state of an entity given an English description of the initial state and a series of state-changing operations. We use this task to first investigate whether Flan-T5, GPT-3 and GPT-3.5 can track the state of entities, and find that only GPT-3.5 models, which have been pretrained on large amounts of code, exhibit this ability. We then investigate whether smaller models pretrained primarily on text can learn to track entities, through finetuning T5 on several training/evaluation splits. While performance degrades for more complex splits, we find that even for splits with almost no lexical overlap between training and evaluation, a finetuned model can often perform non-trivial entity tracking. Taken together, these results suggest that language models can learn to track entities but pretraining on large text corpora alone does not make this capacity surface.
Scalar inferences (SI) are a signature example of how humans interpret language based on unspoken alternatives. While empirical studies have demonstrated that human SI rates are highly variable -- both within instances of a single scale, and across different scales -- there have been few proposals that quantitatively explain both cross- and within-scale variation. Furthermore, while it is generally assumed that SIs arise through reasoning about unspoken alternatives, it remains debated whether humans reason about alternatives as linguistic forms, or at the level of concepts. Here, we test a shared mechanism explaining SI rates within and across scales: context-driven expectations about the unspoken alternatives. Using neural language models to approximate human predictive distributions, we find that SI rates are captured by the expectedness of the strong scalemate as an alternative. Crucially, however, expectedness robustly predicts cross-scale variation only under a meaning-based view of alternatives. Our results suggest that pragmatic inferences arise from context-driven expectations over alternatives, and these expectations operate at the level of concepts.
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Understanding longer narratives or participating in conversations requires tracking of discourse entities that have been mentioned. Indefinite noun phrases (NPs), such as 'a dog', frequently introduce discourse entities but this behavior is modulated by sentential operators such as negation. For example, 'a dog' in 'Arthur doesn't own a dog' does not introduce a discourse entity due to the presence of negation. In this work, we adapt the psycholinguistic assessment of language models paradigm to higher-level linguistic phenomena and introduce an English evaluation suite that targets the knowledge of the interactions between sentential operators and indefinite NPs. We use this evaluation suite for a fine-grained investigation of the entity tracking abilities of the Transformer-based models GPT-2 and GPT-3. We find that while the models are to a certain extent sensitive to the interactions we investigate, they are all challenged by the presence of multiple NPs and their behavior is not systematic, which suggests that even models at the scale of GPT-3 do not fully acquire basic entity tracking abilities.
Relations between words are governed by hierarchical structure rather than linear ordering. Sequence-to-sequence (seq2seq) models, despite their success in downstream NLP applications, often fail to generalize in a hierarchy-sensitive manner when performing syntactic transformations - for example, transforming declarative sentences into questions. However, syntactic evaluations of seq2seq models have only observed models that were not pre-trained on natural language data before being trained to perform syntactic transformations, in spite of the fact that pre-training has been found to induce hierarchical linguistic generalizations in language models; in other words, the syntactic capabilities of seq2seq models may have been greatly understated. We address this gap using the pre-trained seq2seq models T5 and BART, as well as their multilingual variants mT5 and mBART. We evaluate whether they generalize hierarchically on two transformations in two languages: question formation and passivization in English and German. We find that pre-trained seq2seq models generalize hierarchically when performing syntactic transformations, whereas models trained from scratch on syntactic transformations do not. This result presents evidence for the learnability of hierarchical syntactic information from non-annotated natural language text while also demonstrating that seq2seq models are capable of syntactic generalization, though only after exposure to much more language data than human learners receive.
Understanding language requires grasping not only the overtly stated content, but also making inferences about things that were left unsaid. These inferences include presuppositions, a phenomenon by which a listener learns about new information through reasoning about what a speaker takes as given. Presuppositions require complex understanding of the lexical and syntactic properties that trigger them as well as the broader conversational context. In this work, we introduce the Naturally-Occurring Presuppositions in English (NOPE) Corpus to investigate the context-sensitivity of 10 different types of presupposition triggers and to evaluate machine learning models' ability to predict human inferences. We find that most of the triggers we investigate exhibit moderate variability. We further find that transformer-based models draw correct inferences in simple cases involving presuppositions, but they fail to capture the minority of exceptional cases in which human judgments reveal complex interactions between context and triggers.
Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages.
The strength of pragmatic inferences systematically depends on linguistic and contextual cues. For example, the presence of a partitive construction increases the strength of a so-called scalar inference: humans perceive the inference that Chris did not eat all of the cookies to be stronger after hearing "Chris ate some of the cookies" than after hearing the same utterance without a partitive, "Chris ate some cookies". In this work, we explore to what extent it is possible to learn associations between linguistic cues and inference strength ratings without direct supervision. We show that an LSTM-based sentence encoder with an attention mechanism trained on a dataset of human inference strength ratings is able to predict ratings with high accuracy (r=0.78). We probe the model's behavior in multiple analyses using corpus data and manually constructed minimal pairs and find that the model learns associations between linguistic cues and scalar inferences, suggesting that these associations are inferable from statistical input.
One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Neural sequence labeling models have achieved very high accuracy on these tasks when trained on large amounts of training data. However, collecting this data is very time-consuming and therefore it is unfeasible to collect large amounts of data for many languages. For this reason, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. In this paper, we investigate the performance of three different methods for cross-lingual transfer learning, namely (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, we find that multilingual contextual word representations give better results than using cross-lingual static embeddings. We release a dataset of around 57k annotated utterances in English (43k), Spanish (8.6k) and Thai (5k) for three task oriented domains at https://fb.me/multilingual_task_oriented_data.