Abstract:Large language models (LLMs) are increasingly deployed in high-stakes hiring applications, making decisions that directly impact people's careers and livelihoods. While prior studies suggest simple anti-bias prompts can eliminate demographic biases in controlled evaluations, we find these mitigations fail when realistic contextual details are introduced. We address these failures through internal bias mitigation: by identifying and neutralizing sensitive attribute directions within model activations, we achieve robust bias reduction across all tested scenarios. Across leading commercial (GPT-4o, Claude 4 Sonnet, Gemini 2.5 Flash) and open-source models (Gemma-2 27B, Gemma-3, Mistral-24B), we find that adding realistic context such as company names, culture descriptions from public careers pages, and selective hiring constraints (e.g.,``only accept candidates in the top 10\%") induces significant racial and gender biases (up to 12\% differences in interview rates). When these biases emerge, they consistently favor Black over White candidates and female over male candidates across all tested models and scenarios. Moreover, models can infer demographics and become biased from subtle cues like college affiliations, with these biases remaining invisible even when inspecting the model's chain-of-thought reasoning. To address these limitations, our internal bias mitigation identifies race and gender-correlated directions and applies affine concept editing at inference time. Despite using directions from a simple synthetic dataset, the intervention generalizes robustly, consistently reducing bias to very low levels (typically under 1\%, always below 2.5\%) while largely maintaining model performance. Our findings suggest that practitioners deploying LLMs for hiring should adopt more realistic evaluation methodologies and consider internal mitigation strategies for equitable outcomes.
Abstract:To steer pretrained language models for downstream tasks, today's post-training paradigm relies on humans to specify desired behaviors. However, for models with superhuman capabilities, it is difficult or impossible to get high-quality human supervision. To address this challenge, we introduce a new unsupervised algorithm, Internal Coherence Maximization (ICM), to fine-tune pretrained language models on their own generated labels, \emph{without external supervision}. On GSM8k-verification, TruthfulQA, and Alpaca reward modeling tasks, our method matches the performance of training on golden supervision and outperforms training on crowdsourced human supervision. On tasks where LMs' capabilities are strongly superhuman, our method can elicit those capabilities significantly better than training on human labels. Finally, we show that our method can improve the training of frontier LMs: we use our method to train an unsupervised reward model and use reinforcement learning to train a Claude 3.5 Haiku-based assistant. Both the reward model and the assistant outperform their human-supervised counterparts.
Abstract:We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
Abstract:Sparse autoencoders (SAEs) are a popular technique for interpreting language model activations, and there is extensive recent work on improving SAE effectiveness. However, most prior work evaluates progress using unsupervised proxy metrics with unclear practical relevance. We introduce SAEBench, a comprehensive evaluation suite that measures SAE performance across seven diverse metrics, spanning interpretability, feature disentanglement and practical applications like unlearning. To enable systematic comparison, we open-source a suite of over 200 SAEs across eight recently proposed SAE architectures and training algorithms. Our evaluation reveals that gains on proxy metrics do not reliably translate to better practical performance. For instance, while Matryoshka SAEs slightly underperform on existing proxy metrics, they substantially outperform other architectures on feature disentanglement metrics; moreover, this advantage grows with SAE scale. By providing a standardized framework for measuring progress in SAE development, SAEBench enables researchers to study scaling trends and make nuanced comparisons between different SAE architectures and training methodologies. Our interactive interface enables researchers to flexibly visualize relationships between metrics across hundreds of open-source SAEs at: https://saebench.xyz
Abstract:Sparse Autoencoders (SAEs) are an interpretability technique aimed at decomposing neural network activations into interpretable units. However, a major bottleneck for SAE development has been the lack of high-quality performance metrics, with prior work largely relying on unsupervised proxies. In this work, we introduce a family of evaluations based on SHIFT, a downstream task from Marks et al. (Sparse Feature Circuits, 2024) in which spurious cues are removed from a classifier by ablating SAE features judged to be task-irrelevant by a human annotator. We adapt SHIFT into an automated metric of SAE quality; this involves replacing the human annotator with an LLM. Additionally, we introduce the Targeted Probe Perturbation (TPP) metric that quantifies an SAE's ability to disentangle similar concepts, effectively scaling SHIFT to a wider range of datasets. We apply both SHIFT and TPP to multiple open-source models, demonstrating that these metrics effectively differentiate between various SAE training hyperparameters and architectures.
Abstract:Concept erasure in language models has traditionally lacked a comprehensive evaluation framework, leading to incomplete assessments of effectiveness of erasure methods. We propose an evaluation paradigm centered on three critical criteria: innocence (complete knowledge removal), seamlessness (maintaining conditional fluent generation), and specificity (preserving unrelated task performance). Our evaluation metrics naturally motivate the development of Erasure of Language Memory (ELM), a new method designed to address all three dimensions. ELM employs targeted low-rank updates to alter output distributions for erased concepts while preserving overall model capabilities including fluency when prompted for an erased concept. We demonstrate ELM's efficacy on biosecurity, cybersecurity, and literary domain erasure tasks. Comparative analysis shows that ELM achieves superior performance across our proposed metrics, including near-random scores on erased topic assessments, generation fluency, maintained accuracy on unrelated benchmarks, and robustness under adversarial attacks. Our code, data, and trained models are available at https://elm.baulab.info
Abstract:Interpretability provides a toolset for understanding how and why neural networks behave in certain ways. However, there is little unity in the field: most studies employ ad-hoc evaluations and do not share theoretical foundations, making it difficult to measure progress and compare the pros and cons of different techniques. Furthermore, while mechanistic understanding is frequently discussed, the basic causal units underlying these mechanisms are often not explicitly defined. In this paper, we propose a perspective on interpretability research grounded in causal mediation analysis. Specifically, we describe the history and current state of interpretability taxonomized according to the types of causal units (mediators) employed, as well as methods used to search over mediators. We discuss the pros and cons of each mediator, providing insights as to when particular kinds of mediators and search methods are most appropriate depending on the goals of a given study. We argue that this framing yields a more cohesive narrative of the field, as well as actionable insights for future work. Specifically, we recommend a focus on discovering new mediators with better trade-offs between human-interpretability and compute-efficiency, and which can uncover more sophisticated abstractions from neural networks than the primarily linear mediators employed in current work. We also argue for more standardized evaluations that enable principled comparisons across mediator types, such that we can better understand when particular causal units are better suited to particular use cases.
Abstract:What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating the quality of these SAEs is difficult because we lack a ground-truth collection of interpretable features that we expect good SAEs to recover. We thus propose to measure progress in interpretable dictionary learning by working in the setting of LMs trained on chess and Othello transcripts. These settings carry natural collections of interpretable features -- for example, "there is a knight on F3" -- which we leverage into $\textit{supervised}$ metrics for SAE quality. To guide progress in interpretable dictionary learning, we introduce a new SAE training technique, $\textit{p-annealing}$, which improves performance on prior unsupervised metrics as well as our new metrics.
Abstract:The enormous scale of state-of-the-art foundation models has limited their accessibility to scientists, because customized experiments at large model sizes require costly hardware and complex engineering that is impractical for most researchers. To alleviate these problems, we introduce NNsight, an open-source Python package with a simple, flexible API that can express interventions on any PyTorch model by building computation graphs. We also introduce NDIF, a collaborative research platform providing researchers access to foundation-scale LLMs via the NNsight API. Code, documentation, and tutorials are available at https://www.nnsight.net.
Abstract:One way to address safety risks from large language models (LLMs) is to censor dangerous knowledge from their training data. While this removes the explicit information, implicit information can remain scattered across various training documents. Could an LLM infer the censored knowledge by piecing together these implicit hints? As a step towards answering this question, we study inductive out-of-context reasoning (OOCR), a type of generalization in which LLMs infer latent information from evidence distributed across training documents and apply it to downstream tasks without in-context learning. Using a suite of five tasks, we demonstrate that frontier LLMs can perform inductive OOCR. In one experiment we finetune an LLM on a corpus consisting only of distances between an unknown city and other known cities. Remarkably, without in-context examples or Chain of Thought, the LLM can verbalize that the unknown city is Paris and use this fact to answer downstream questions. Further experiments show that LLMs trained only on individual coin flip outcomes can verbalize whether the coin is biased, and those trained only on pairs $(x,f(x))$ can articulate a definition of $f$ and compute inverses. While OOCR succeeds in a range of cases, we also show that it is unreliable, particularly for smaller LLMs learning complex structures. Overall, the ability of LLMs to "connect the dots" without explicit in-context learning poses a potential obstacle to monitoring and controlling the knowledge acquired by LLMs.