Abstract:We propose a novel integrated sensing and communication (ISAC) system that leverages sensing to assist communication, ensuring fast initial access, seamless user tracking, and uninterrupted communication for millimeter wave (mmWave) wideband systems. True-time-delayers (TTDs) are utilized to generate frequency-dependent radar rainbow beams by controlling the beam squint effect. These beams cover users across the entire angular space simultaneously for fast beam training using just one orthogonal frequency-division multiplexing (OFDM) symbol. Three detection and estimation schemes are proposed based on radar rainbow beams for estimation of the users' angles, distances, and velocities, which are then exploited for communication beamformer design. The first proposed scheme utilizes a single-antenna radar receiver and one set of rainbow beams, but may cause a Doppler ambiguity. To tackle this limitation, two additional schemes are introduced, utilizing two sets of rainbow beams and a multi-antenna receiver, respectively. Furthermore, the proposed detection and estimation schemes are extended to realize user tracking by choosing different subsets of OFDM subcarriers. This approach eliminates the need to switch phase shifters and TTDs, which are typically necessary in existing tracking technologies, thereby reducing the demands on the control circurity. Simulation results reveal the effectiveness of the proposed rainbow beam-based training and tracking methods for mobile users. Notably, the scheme employing a multi-antenna radar receiver can accurately estimate the channel parameters and can support communication rates comparable to those achieved with perfect channel information.
Abstract:The line-of-sight (LOS) requirement of free-space optical (FSO) systems can be relaxed by employing optical intelligent reflecting surfaces (IRSs). In this paper, we model the impact of the IRS-induced delay dispersion and derive the channel impulse response (CIR) of IRS-assisted FSO links. The proposed model takes into account the characteristics of the incident and reflected beams' wavefronts, the position of transmitter and receiver, the size of the IRS, and the incident beamwidth on the IRS. Our simulation results reveal that a maximum effective delay spread of 0.7 ns is expected for a square IRS with area 1 $\mathrm{m}^2$, which induces inter-symbol interference for bit rates larger than 10 Gbps. We show that the IRS-induced delay dispersion can be mitigated via equalization at the receiver.
Abstract:Future communication systems are envisioned to employ intelligent reflecting surfaces (IRSs) and the millimeter wave (mmWave) frequency band to provide reliable high-rate services. For mobile users, the time-varying channel state information (CSI) requires adequate adjustment of the reflection pattern of the IRS. We propose a novel codebook-based user tracking (UT) algorithm for IRS-assisted mmWave communication, allowing suitable reconfiguration of the IRS unit cell phase shifts, resulting in a high reflection gain. The presented algorithm acquires the direction information of the user based on a peak likelihood-based direction estimation. Using the direction information, the user's trajectory is extrapolated to proactively update the adopted codeword and adjust the IRS phase shift configuration accordingly. Furthermore, we conduct a theoretical analysis of the direction estimation error and utilize the obtained insights to design a codebook specifically optimized for direction estimation. Our numerical results reveal a lower direction estimation error of the proposed UT algorithm when employing our designed codebook compared to codebooks from the literature. Furthermore, the average achieved signal-to-noise ratio (SNR) as well as the average effective rate of the proposed UT algorithm are analyzed. The proposed UT algorithm requires only a low overhead for direction and channel estimation and avoids outdated IRS phase shifts. Furthermore, it is shown to outperform two benchmark schemes based on direct phase shift optimization and hierarchical codebook search, respectively, via computer simulations.
Abstract:The evolution of wireless communications has been significantly influenced by remarkable advancements in multiple access (MA) technologies over the past five decades, shaping the landscape of modern connectivity. Within this context, a comprehensive tutorial review is presented, focusing on representative MA techniques developed over the past 50 years. The following areas are explored: i) The foundational principles and information-theoretic capacity limits of power-domain non-orthogonal multiple access (NOMA) are characterized, along with its extension to multiple-input multiple-output (MIMO)-NOMA. ii) Several MA transmission schemes exploiting the spatial domain are investigated, encompassing both conventional space-division multiple access (SDMA)/MIMO-NOMA systems and near-field MA systems utilizing spherical-wave propagation models. iii) The application of NOMA to integrated sensing and communications (ISAC) systems is studied. This includes an introduction to typical NOMA-based downlink/uplink ISAC frameworks, followed by an evaluation of their performance limits using a mutual information (MI)-based analytical framework. iv) Major issues and research opportunities associated with the integration of MA with other emerging technologies are identified to facilitate MA in next-generation networks, i.e., next-generation multiple access (NGMA). Throughout the paper, promising directions are highlighted to inspire future research endeavors in the realm of MA and NGMA.
Abstract:Efficient beam training is the key challenge in the codebook-based configuration of reconfigurable intelligent surfaces (RISs) because the beam training overhead can have a strong impact on the achievable system performance. In this paper, we study the performance tradeoff between overhead and achievable signal-to-noise ratio (SNR) in RIS beam training while taking into account the size of the targeted coverage area, the RIS response time, and the delay for feedback transmissions. Thereby, we consider three common beam training strategies: full search (FS), hierarchical search (HS), and tracking-based search (TS). Our analysis shows that the codebook-based illumination of a given coverage area can be realized with wide- or narrow-beam designs, which result in two different scaling laws for the achievable SNR. Similarly, there are two regimes for the overhead, where the number of pilot symbols required for reliable beam training is dependent on and independent of the SNR, respectively. Based on these insights, we investigate the impact of the beam training overhead on the effective rate and provide an upper bound on the user velocity for which the overhead is negligible. Moreover, when the overhead is not negligible, we show that TS beam training achieves higher effective rates than HS and FS beam training, while HS beam training may or may not outperform FS beam training, depending on the RIS response time, feedback delay, and codebook size. Finally, we present numerical simulation results that verify our theoretical analysis. In particular, our results confirm the existence of the proposed regimes, reveal that fast RISs can lead to negligible overhead for FS beam training, and show that large feedback delays can significantly reduce the performance for HS beam training.
Abstract:Modern wireless communication systems are expected to provide improved latency and reliability. To meet these expectations, a short packet length is needed, which makes the first-order Shannon rate an inaccurate performance metric for such communication systems. A more accurate approximation of the achievable rates of finite-block-length (FBL) coding regimes is known as the normal approximation (NA). It is therefore of substantial interest to study the optimization of the FBL rate in multi-user multiple-input multiple-output (MIMO) systems, in which each user may transmit and/or receive multiple data streams. Hence, we formulate a general optimization problem for improving the spectral and energy efficiency of multi-user MIMO-aided ultra-reliable low-latency communication (URLLC) systems, which are assisted by reconfigurable intelligent surfaces (RISs). We show that a RIS is capable of substantially improving the performance of multi-user MIMO-aided URLLC systems. Moreover, the benefits of RIS increase as the packet length and/or the tolerable bit error rate are reduced. This reveals that RISs can be even more beneficial in URLLC systems for improving the FBL rates than in conventional systems approaching Shannon rates.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) systems are capable of improving spectral efficiency by employing far more antennas than conventional massive MIMO at the base station (BS). However, beam training in multiuser XL-MIMO systems is challenging. To tackle these issues, we conceive a three-phase graph neural network (GNN)-based beam training scheme for multiuser XL-MIMO systems. In the first phase, only far-field wide beams have to be tested for each user and the GNN is utilized to map the beamforming gain information of the far-field wide beams to the optimal near-field beam for each user. In addition, the proposed GNN-based scheme can exploit the position-correlation between adjacent users for further improvement of the accuracy of beam training. In the second phase, a beam allocation scheme based on the probability vectors produced at the outputs of GNNs is proposed to address the above beam-direction conflicts between users. In the third phase, the hybrid TBF is designed for further reducing the inter-user interference. Our simulation results show that the proposed scheme improves the beam training performance of the benchmarks. Moreover, the performance of the proposed beam training scheme approaches that of an exhaustive search, despite requiring only about 7% of the pilot overhead.
Abstract:Future wireless networks are envisioned to simultaneously provide high data-rate communication and ubiquitous environment-aware services for numerous users. One promising approach to meet this demand is to employ network-level integrated sensing and communications (ISAC) by jointly designing the signal processing and resource allocation over the entire network. However, to unleash the full potential of network-level ISAC, some critical challenges must be tackled. Among them, interference management is one of the most significant ones. In this article, we build up a bridge between interference mitigation techniques and the corresponding optimization methods, which facilitates efficient interference mitigation in network-level ISAC systems. In particular, we first identify several types of interference in network-level ISAC systems, including self-interference, mutual interference, crosstalk, clutter, and multiuser interference. Then, we present several promising techniques that can be utilized to suppress specific types of interference. For each type of interference, we discuss the corresponding problem formulation and identify the associated optimization methods. Moreover, to illustrate the effectiveness of the proposed interference mitigation techniques, two concrete network-level ISAC systems, namely coordinated cellular network-based and distributed antenna-based ISAC systems, are investigated from interference management perspective. Experiment results indicate that it is beneficial to collaboratively employ different interference mitigation techniques and leverage the network structure to achieve the full potential of network-level ISAC. Finally, we highlight several promising future research directions for the design of ISAC systems.
Abstract:The aim of this paper is to develop hybrid non-orthogonal multiple access (NOMA) assisted downlink transmission. First, for the single-input single-output (SISO) scenario, i.e., each node is equipped with a single antenna, a novel hybrid NOMA scheme is introduced, where NOMA is implemented as an add-on of a legacy time division multiple access (TDMA) network. Because of the simplicity of the SISO scenario, analytical results can be developed to reveal important properties of downlink hybrid NOMA. For example, in the case that the users' channel gains are ordered and the durations of their time slots are the same, downlink hybrid NOMA is shown to always outperform TDMA, which is different from the existing conclusion for uplink hybrid NOMA. Second, the proposed downlink SISO hybrid NOMA scheme is extended to the multiple-input single-output (MISO) scenario, i.e., the base station has multiple antennas. For the MISO scenario, near-field communication is considered to illustrate how NOMA can be used as an add-on in legacy networks based on space division multiple access and TDMA. Simulation results verify the developed analytical results and demonstrate the superior performance of downlink hybrid NOMA compared to conventional orthogonal multiple access.
Abstract:In this chapter, we investigate the mathematical foundation of the modeling and design of reconfigurable intelligent surfaces (RIS) in both the far- and near-field regimes. More specifically, we first present RIS-assisted wireless channel models for the far- and near-field regimes, discussing relevant phenomena, such as line-of-sight (LOS) and non-LOS links, rich and poor scattering, channel correlation, and array manifold. Subsequently, we introduce two general approaches for the RIS reflective beam design, namely optimization-based and analytical, which offer different degrees of design flexibility and computational complexity. Furthermore, we provide a comprehensive set of simulation results for the performance evaluation of the studied RIS beam designs and the investigation of the impact of the system parameters.