Abstract:LC technology is a promising hardware solution for realizing extremely large RISs due to its advantages in cost-effectiveness, scalability, energy efficiency, and continuous phase shift tunability. However, the slow response time of the LC cells, especially in comparison to the silicon-based alternatives like radio frequency switches and PIN diodes, limits the performance. This limitation becomes particularly relevant in TDMA applications where RIS must sequentially serve users in different locations, as the phase-shifting response time of LC cells can constrain system performance. This paper addresses the slow phase-shifting limitation of LC by developing a physics-based model for the time response of an LC unit cell and proposing a novel phase-shift design framework to reduce the transition time. Specifically, exploiting the fact that LC-RIS at milimeter wave bands have a large electric aperture, we optimize the LC phase shifts based on user locations, eliminating the need for full channel state information and minimizing reconfiguration overhead. Moreover, instead of focusing on a single point, the RIS phase shifters are designed to optimize coverage over an area. This enhances communication reliability for mobile users and mitigates performance degradation due to user location estimation errors. The proposed design minimizes the transition time between configurations, a critical requirement for TDMA schemes. Our analysis reveals that the impact of RIS reconfiguration time on system throughput becomes particularly significant when TDMA intervals are comparable to the reconfiguration time. In such scenarios, optimizing the phase-shift design helps mitigate performance degradation while ensuring specific QoS requirements. Moreover, the proposed algorithm has been tested through experimental evaluations, which demonstrate that it also performs effectively in practice.
Abstract:Liquid crystal (LC) technology enables low-power and cost-effective solutions for implementing the reconfigurable intelligent surface (RIS). However, the phase-shift response of LC-RISs is temperature-dependent, which, if unaddressed, can degrade the performance. This issue is particularly critical in applications such as secure communications, where variations in phase-shift response may lead to significant information leakage. In this paper, we consider secure communication through an LC-RIS and developed a temperature-aware algorithm adapting the RIS phase shifts to thermal conditions. Our simulation results demonstrate that the proposed algorithm significantly improves the secure data rate compared to scenarios where temperature variations are not accounted for.
Abstract:Near-field (NF) communications is receiving renewed attention in the context of passive reconfigurable intelligent surfaces (RISs) due to their potentially extremely large dimensions. Although line-of-sight (LOS) links are expected to be dominant in NF scenarios, it is not a priori obvious whether or not the impact of non-LOS components can be neglected. Furthermore, despite being weaker than the LOS link, non-LOS links may be required to achieve multiplexing gains in multi-user multiple-input multiple-output (MIMO) scenarios. In this paper, we develop a generalized statistical NF model for RIS-assisted MIMO systems that extends the widely adopted point-scattering model to account for imperfect reflections at large surfaces like walls, ceilings, and the ground. Our simulation results confirm the accuracy of the proposed model and reveal that in various practical scenarios, the impact of non-LOS components is indeed non-negligible, and thus, needs to be carefully taken into consideration.
Abstract:Liquid crystal (LC) technology offers a cost-effective, scalable, energy-efficient, and continuous phase tunable realization of extremely large reconfigurable intelligent surfaces (RISs). However, LC response time to achieve a desired differential phase is significantly higher compared to competing silicon-based technologies (RF switches, PIN diodes, etc). The slow response time can be the performance bottleneck for applications where frequent reconfiguration of the RIS (e.g., to serve different users) is needed. In this paper, we develop an RIS phase-shift design that is aware of the transition behavior and aims to minimize the time to switch among multiple RIS configurations each serving a mobile user in a time-division multiple-access (TDMA) protocol. Our simulation results confirm that the proposed algorithm significantly reduces the time required for the users to achieve a threshold signal quality. This leads to a considerable improvement in the achievable throughput for applications, where the length of the TDMA time intervals is comparable with the RIS reconfiguration time.
Abstract:In this chapter, we investigate the mathematical foundation of the modeling and design of reconfigurable intelligent surfaces (RIS) in both the far- and near-field regimes. More specifically, we first present RIS-assisted wireless channel models for the far- and near-field regimes, discussing relevant phenomena, such as line-of-sight (LOS) and non-LOS links, rich and poor scattering, channel correlation, and array manifold. Subsequently, we introduce two general approaches for the RIS reflective beam design, namely optimization-based and analytical, which offer different degrees of design flexibility and computational complexity. Furthermore, we provide a comprehensive set of simulation results for the performance evaluation of the studied RIS beam designs and the investigation of the impact of the system parameters.