Fellow, IEEE
Abstract:The Rydberg atomic quantum receiver (RAQR) is an emerging quantum precision sensing platform designed for receiving radio frequency (RF) signals. It relies on creation of Rydberg atoms from normal atoms by exciting one or more electrons to a very high energy level, which in turn makes the atom sensitive to RF signals. The RAQR realizes RF-to-optical conversion based on light-atom interaction relying on the so called electromagnetically induced transparency (EIT) and Aulter-Townes splitting (ATS), so that the desired RF signal can be read out optically. The large dipole moments of Rydberg atoms associated with rich choices of Rydberg states and various modulation schemes facilitate an ultra-high sensitivity ($\sim$ nV/cm/$\sqrt{\text{Hz}}$) and an ultra-broadband tunability (near direct-current to Terahertz). RAQRs also exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers. Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing. To fully harness their potential in a wide variety of applications, we commence by outlining the underlying fundamentals of Rydberg atoms, followed by the principles, structures, and theories of RAQRs. Finally, we conceive Rydberg atomic quantum single-input single-output (RAQ-SISO) and multiple-input multiple-output (RAQ-MIMO) schemes for facilitating the integration of RAQRs with classical wireless systems, and conclude with a set of potent research directions.
Abstract:By harnessing the delay-Doppler (DD) resource domain, orthogonal time-frequency space (OTFS) substantially improves the communication performance under high-mobility scenarios by maintaining quasi-time-invariant channel characteristics. However, conventional multiple access (MA) techniques fail to efficiently support OTFS in the face of diverse communication requirements. Recently, multi-dimensional MA (MDMA) has emerged as a flexible channel access technique by elastically exploiting multi-domain resources for tailored service provision. Therefore, we conceive an elastic multi-domain resource utilization mechanism for a novel multi-user OTFS-MDMA system by leveraging user-specific channel characteristics across the DD, power, and spatial resource domains. Specifically, we divide all DD resource bins into separate subregions called DD resource slots (RSs), each of which supports a fraction of users, thus reducing the multi-user interference. Then, the most suitable MA, including orthogonal, non-orthogonal, or spatial division MA (OMA/ NOMA/ SDMA), will be selected with each RS based on the interference levels in the power and spatial domains, thus enhancing the spectrum efficiency. Then, we jointly optimize the user assignment, access scheme selection, and power allocation in all DD RSs to maximize the weighted sum-rate subject to their minimum rate and various practical constraints. Since this results in a non-convex problem, we develop a dynamic programming and monotonic optimization (DPMO) method to find the globally optimal solution in the special case of disregarding rate constraints. Subsequently, we apply a low-complexity algorithm to find sub-optimal solutions in general cases.
Abstract:Millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems capable of integrated sensing and communication (ISAC) constitute a key technology for connected autonomous vehicles (CAVs). In this context, we propose a multi-beam object-localization (MBOL) model for enhancing the sensing beampattern (SBP) gain of adjacent objects in CAV scenarios. Given the ultra-narrow beams of mmWave MIMO systems, a single pencil beam is unsuitable for closely located objects, which tend to require multiple beams. Hence, we formulate the SBP gain maximization problem, considering also the constraints on the signal-to-interference and noise ratio (SINR) of the communication users (CUs), on the transmit power, and the constant modulus of the phase-shifters in the mmWave hybrid transceiver. To solve this non-convex problem, we propose a penalty-based triple alternating optimization algorithm to design the hybrid beamformer. Finally, simulation results are provided for demonstrating the efficacy of the proposed model.
Abstract:Large optical reconfigurable intelligent surfaces (ORISs) are proposed for employment on building rooftops to facilitate free-space quantum key distribution (QKD) between high-altitude platforms (HAPs) and low-altitude platforms (LAPs). Due to practical constraints, the communication terminals can only be positioned beneath the LAPs, preventing direct upward links to HAPs. By deploying ORISs on rooftops to reflect the beam arriving from HAPs towards LAPs from below, reliable HAP-to-LAP links can be established. To accurately characterize the optical beam propagation, we develop an analytical channel model based on extended Huygens-Fresnel principles for representing both the atmospheric turbulence effects and the hovering fluctuations of LAPs. This model facilitates adaptive ORIS beam-width control through linear, quadratic, and focusing phase shifts, which are capable of effectively mitigating the detrimental effects of beam broadening and pointing errors (PE). Furthermore, we derive a closed-form expression for the information-theoretic bound of the QKD secret key rate (SKR) of the HAP-to-LAP links. Our findings demonstrate that quadratic phase shifts enhance the SKR at high HAP-ORIS zenith angles or mild PE conditions by narrowing the beam to optimal sizes. By contrast, linear phase shifts are advantageous at low HAP-ORIS zenith angles under moderate-to-high PE by diverging the beam to mitigate LAP fluctuations.
Abstract:We propose reflection pattern modulation-aided reconfigurable intelligent surface (RPM-RIS)-assisted cell-free massive multiple-input-multiple-output (CF-mMIMO) schemes for green uplink transmission. In our RPM-RIS-assisted CF-mMIMO system, extra information is conveyed by the indices of the active RIS blocks, exploiting the joint benefits of both RIS-assisted CF-mMIMO transmission and RPM. Since only part of the RIS blocks are active, our proposed architecture strikes a flexible energy \emph{vs.} spectral efficiency (SE) trade-off. We commence with introducing the system model by considering spatially correlated channels. Moreover, we conceive a channel estimation scheme subject to the linear minimum mean-square error (MMSE) constraint, yielding sufficient information for the subsequent signal processing steps. Then, upon exploiting a so-called large-scale fading decoding (LSFD) scheme, the uplink signal-to-interference-and-noise ratio (SINR) is derived based on the RIS ON/OFF statistics, where both maximum ratio (MR) and local minimum mean-square error (L-MMSE) combiners are considered. By invoking the MR combiner, the closed-form expression of the uplink SE is formulated based only on the channel statistics. Furthermore, we derive the total energy efficiency (EE) of our proposed RPM-RIS-assisted CF-mMIMO system. Additionally, we propose a chaotic sequence-based adaptive particle swarm optimization (CSA-PSO) algorithm to maximize the total EE by designing the RIS phase shifts. Finally, our simulation results demonstrate that the proposed RPM-RIS-assisted CF-mMIMO architecture strikes an attractive SE \emph{vs.} EE trade-off, while the CSA-PSO algorithm is capable of attaining a significant EE performance gain compared to conventional solutions.
Abstract:This paper investigates a two-user downlink system for integrated sensing and communication (ISAC) in which the two users deploy a fluid antenna system (FAS) and adopt the nonorthogonal multiple access (NOMA) strategy. Specifically, the integrated sensing and backscatter communication (ISABC) model is considered, where a dual-functional base station (BS) serves to communicate the two users and sense a tag's surrounding. In contrast to conventional ISAC, the backscattering tag reflects the signals transmitted by the BS to the NOMA users and enhances their communication performance. Furthermore, the BS extracts environmental information from the same backscatter signal in the sensing stage. Firstly, we derive closed-form expressions for both the cumulative distribution function (CDF) and probability density function (PDF) of the equivalent channel at the users utilizing the moment matching method and the Gaussian copula. Then in the communication stage, we obtain closed-form expressions for both the outage probability and for the corresponding asymptotic expressions in the high signal-to-noise ratio (SNR) regime. Moreover, using numerical integration techniques such as the Gauss-Laguerre quadrature (GLQ), we have series-form expressions for the user ergodic communication rates (ECRs). In addition, we get a closed-form expression for the ergodic sensing rate (ESR) using the Cramer-Rao lower bound (CRLB). Finally, the accuracy of our analytical results is validated numerically, and we confirm the superiority of employing FAS over traditional fixed-position antenna systems in both ISAC and ISABC.
Abstract:A cell-free massive multiple-input multiple-output (CF-mMIMO) system is considered for enhancing the monitoring performance of wireless surveillance, where a large number of distributed multi-antenna aided legitimate monitoring nodes (MNs) proactively monitor multiple distributed untrusted communication links. We consider two types of MNs whose task is to either observe the untrusted transmitters or jam the untrusted receivers. We first analyze the performance of CF-mMIMO surveillance relying on both maximum ratio (MR) and partial zero-forcing (PZF) combining schemes and derive closed-form expressions for the monitoring success probability (MSP) of the MNs. We then propose a joint optimization technique that designs the MN mode assignment, power control, and MN-weighting coefficient control to enhance the MSP based on the long-term statistical channel state information knowledge. This challenging problem is effectively transformed into tractable forms and efficient algorithms are proposed for solving them. Numerical results show that our proposed CF-mMIMO surveillance system considerably improves the monitoring performance with respect to a full-duplex co-located massive MIMO proactive monitoring system. More particularly, when the untrusted pairs are distributed over a wide area and use the MR combining, the proposed solution provides nearly a thirty-fold improvement in the minimum MSP over the co-located massive MIMO baseline, and forty-fold improvement, when the PZF combining is employed.
Abstract:In this work, a reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multiple-input multiple-output (MIMO) cognitive radio (CR) downlink operating in the underlay mode is investigated. The cognitive base station (CBS) communicates with multiple secondary users (SUs), each having multiple RF chains in the presence of a primary user (PU). We conceive a joint hybrid transmit precoder (TPC), receiver combiner (RC), and RIS reflection matrix (RM) design, which maximizes the sum spectral efficiency (SE) of the secondary system while maintaining the interference induced at the PU below a specified threshold. To this end, we formulate the sum-SE maximization problem considering the total transmit power (TP), the interference power (IP), and the non-convex unity modulus constraints of the RF TPC, RF RC, and RM. To solve this highly non-convex problem, we propose a two-stage hybrid transceiver design in conjunction with a novel block coordinate descent (BCD)-successive Riemannian conjugate gradient (SRCG) algorithm. We initially decompose the RF TPC, RC, and RM optimization problem into a series of sub-problems and subsequently design pairs of RF TPC and RC vectors, followed by successively optimizing the elements of the RM using the iterative BCD-SRCG algorithm. Furthermore, based on the effective baseband (BB) channel, the BB TPC and BB RC are designed using the proposed direct singular value decomposition (D-SVD) and projection based SVD (P-SVD) methods. Subsequently, the proportional water-filling solution is proposed for optimizing the power, which maximizes the weighted sum-SE of the system. Finally, simulation results are provided to compare our proposed schemes to several benchmarks and quantify the impact of other parameters on the sum-SE of the system.
Abstract:Pareto optimal solutions are conceived for radar beamforming error (RBE) and sum rate maximization in short-packet (SP) millimeter-wave (mmWave) integrated sensing and communication (ISAC). Our ultimate goal is to realize ultra-reliable low-latency communication (uRLLC) and real-time sensing capabilities for 6G applications. The ISAC base station (BS) transmits short packets in the downlink (DL) to serve multiple communication users (CUs) and detect multiple radar targets (RTs). We investigate the performance trade-off between the sensing and communication capabilities by optimizing both the radio frequency (RF) and the baseband (BB) transmit precoder (TPC), together with the block lengths. The optimization problem considers the minimum rate requirements of the CUs, the maximum tolerable radar beamforming error (RBE) for the RTs, the unit modulus (UM) elements of the RF TPC, and the finite transmit power as the constraints for SP transmission. The resultant problem is highly non-convex due to the intractable rate expression of the SP regime coupled with the non-convex rate and UM constraints. To solve this problem, we propose an innovative two-layer bisection search (TLBS) algorithm, wherein the RF and BB TPCs are optimized in the inner layer, followed by the block length in the outer layer. Furthermore, a pair of novel methods, namely a bisection search-based majorizer and minimizer (BMM) as well as exact penalty-based manifold optimization (EPMO) are harnessed for optimizing the RF TPC in the inner layer. Subsequently, the BB TPC and the block length are derived via second-order cone programming (SOCP) and mixed integer programming methods, respectively. Finally, our exhaustive simulation results reveal the effect of system parameters for various settings on the RBE-rate region of the SP mmWave ISAC system and demonstrate a significantly enhanced performance compared to the benchmarks.
Abstract:The integration of sensing and communication (ISAC) emerges as a cornerstone technology for the forth upcoming sixth generation era, seamlessly incorporating sensing functionality into wireless networks as a native capability. The main challenges in efficient ISAC are constituted by its limited sensing and communication coverage, as well as severe inter-cell interference. Network-level ISAC relying on multi-cell cooperation is capable of effectively expanding both the sensing and communication (S&C) coverage and of providing extra degrees of freedom (DoF) for realizing increased integration gains between S&C. In this work, we provide new considerations for ISAC networks, including new metrics, the optimization of the DoF, cooperation regimes, and highlight new S&C tradeoffs. Then, we discuss a suite of cooperative S&C architectures both at the task, as well as data, and signal levels. Furthermore, the interplay between S&C at the network level is investigated and promising research directions are outlined.