Abstract:Rain degrades the visual quality of multi-view images, which are essential for 3D scene reconstruction, resulting in inaccurate and incomplete reconstruction results. Existing datasets often overlook two critical characteristics of real rainy 3D scenes: the viewpoint-dependent variation in the appearance of rain streaks caused by their projection onto 2D images, and the reduction in ambient brightness resulting from cloud coverage during rainfall. To improve data realism, we construct a new dataset named OmniRain3D that incorporates perspective heterogeneity and brightness dynamicity, enabling more faithful simulation of rain degradation in 3D scenes. Based on this dataset, we propose an end-to-end reconstruction framework named REVR-GSNet (Rain Elimination and Visibility Recovery for 3D Gaussian Splatting). Specifically, REVR-GSNet integrates recursive brightness enhancement, Gaussian primitive optimization, and GS-guided rain elimination into a unified architecture through joint alternating optimization, achieving high-fidelity reconstruction of clean 3D scenes from rain-degraded inputs. Extensive experiments show the effectiveness of our dataset and method. Our dataset and method provide a foundation for future research on multi-view image deraining and rainy 3D scene reconstruction.




Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.