Abstract:Learning contrastive representations from pairwise comparisons has achieved remarkable success in various fields, such as natural language processing, computer vision, and information retrieval. Collaborative filtering algorithms based on pairwise learning also rooted in this paradigm. A significant concern is the absence of labels for negative instances in implicit feedback data, which often results in the random selected negative instances contains false negatives and inevitably, biased embeddings. To address this issue, we introduce a novel correction method for sampling bias that yields a modified loss for pairwise learning called debiased pairwise loss (DPL). The key idea underlying DPL is to correct the biased probability estimates that result from false negatives, thereby correcting the gradients to approximate those of fully supervised data. The implementation of DPL only requires a small modification of the codes. Experimental studies on five public datasets validate the effectiveness of proposed learning method.
Abstract:Random Fourier Features (RFF) demonstrate wellappreciated performance in kernel approximation for largescale situations but restrict kernels to be stationary and positive definite. And for non-stationary kernels, the corresponding RFF could be converted to that for stationary indefinite kernels when the inputs are restricted to the unit sphere. Numerous methods provide accessible ways to approximate stationary but indefinite kernels. However, they are either biased or possess large variance. In this article, we propose the generalized orthogonal random features, an unbiased estimation with lower variance.Experimental results on various datasets and kernels verify that our algorithm achieves lower variance and approximation error compared with the existing kernel approximation methods. With better approximation to the originally selected kernels, improved classification accuracy and regression ability is obtained with our approximation algorithm in the framework of support vector machine and regression.
Abstract:Efficient model inference is an important and practical issue in the deployment of deep neural network on resource constraint platforms. Network quantization addresses this problem effectively by leveraging low-bit representation and arithmetic that could be conducted on dedicated embedded systems. In the previous works, the parameter bitwidth is set homogeneously and there is a trade-off between superior performance and aggressive compression. Actually the stacked network layers, which are generally regarded as hierarchical feature extractors, contribute diversely to the overall performance. For a well-trained neural network, the feature distributions of different categories differentiate gradually as the network propagates forward. Hence the capability requirement on the subsequent feature extractors is reduced. It indicates that the neurons in posterior layers could be assigned with lower bitwidth for quantized neural networks. Based on this observation, a simple but effective mixed-precision quantized neural network with progressively ecreasing bitwidth is proposed to improve the trade-off between accuracy and compression. Extensive experiments on typical network architectures and benchmark datasets demonstrate that the proposed method could achieve better or comparable results while reducing the memory space for quantized parameters by more than 30\% in comparison with the homogeneous counterparts. In addition, the results also demonstrate that the higher-precision bottom layers could boost the 1-bit network performance appreciably due to a better preservation of the original image information while the lower-precision posterior layers contribute to the regularization of $k-$bit networks.