Abstract:The ever-growing scale of deep learning models and datasets underscores the critical importance of efficient optimization methods. While preconditioned gradient methods such as Adam and AdamW are the de facto optimizers for training neural networks and large language models, structure-aware preconditioned optimizers like Shampoo and Muon, which utilize the matrix structure of gradients, have demonstrated promising evidence of faster convergence. In this paper, we introduce a unifying framework for analyzing "matrix-aware" preconditioned methods, which not only sheds light on the effectiveness of Muon and related optimizers but also leads to a class of new structure-aware preconditioned methods. A key contribution of this framework is its precise distinction between preconditioning strategies that treat neural network weights as vectors (addressing curvature anisotropy) versus those that consider their matrix structure (addressing gradient anisotropy). This perspective provides new insights into several empirical phenomena in language model pre-training, including Adam's training instabilities, Muon's accelerated convergence, and the necessity of learning rate warmup for Adam. Building upon this framework, we introduce PolarGrad, a new class of preconditioned optimization methods based on the polar decomposition of matrix-valued gradients. As a special instance, PolarGrad includes Muon with updates scaled by the nuclear norm of the gradients. We provide numerical implementations of these methods, leveraging efficient numerical polar decomposition algorithms for enhanced convergence. Our extensive evaluations across diverse matrix optimization problems and language model pre-training tasks demonstrate that PolarGrad outperforms both Adam and Muon.
Abstract:Nash Learning from Human Feedback is a game-theoretic framework for aligning large language models (LLMs) with human preferences by modeling learning as a two-player zero-sum game. However, using raw preference as the payoff in the game highly limits the potential of the game-theoretic LLM alignment framework. In this paper, we systematically study using what choices of payoff based on the pairwise human preferences can yield desirable alignment properties. We establish necessary and sufficient conditions for Condorcet consistency, diversity through mixed strategies, and Smith consistency. These results provide a theoretical foundation for the robustness of game-theoretic LLM alignment. Further, we show the impossibility of preference matching -- i.e., no smooth and learnable mappings of pairwise preferences can guarantee a unique Nash equilibrium that matches a target policy, even under standard assumptions like the Bradley-Terry-Luce model. This result highlights the fundamental limitation of game-theoretic LLM alignment.
Abstract:Modality fusion is a cornerstone of multimodal learning, enabling information integration from diverse data sources. However, vanilla fusion methods are limited by (1) inability to account for heterogeneous interactions between modalities and (2) lack of interpretability in uncovering the multimodal interactions inherent in the data. To this end, we propose I2MoE (Interpretable Multimodal Interaction-aware Mixture of Experts), an end-to-end MoE framework designed to enhance modality fusion by explicitly modeling diverse multimodal interactions, as well as providing interpretation on a local and global level. First, I2MoE utilizes different interaction experts with weakly supervised interaction losses to learn multimodal interactions in a data-driven way. Second, I2MoE deploys a reweighting model that assigns importance scores for the output of each interaction expert, which offers sample-level and dataset-level interpretation. Extensive evaluation of medical and general multimodal datasets shows that I2MoE is flexible enough to be combined with different fusion techniques, consistently improves task performance, and provides interpretation across various real-world scenarios. Code is available at https://github.com/Raina-Xin/I2MoE.
Abstract:One of the key technologies for the success of Large Language Models (LLMs) is preference alignment. However, a notable side effect of preference alignment is poor calibration: while the pre-trained models are typically well-calibrated, LLMs tend to become poorly calibrated after alignment with human preferences. In this paper, we investigate why preference alignment affects calibration and how to address this issue. For the first question, we observe that the preference collapse issue in alignment undesirably generalizes to the calibration scenario, causing LLMs to exhibit overconfidence and poor calibration. To address this, we demonstrate the importance of fine-tuning with domain-specific knowledge to alleviate the overconfidence issue. To further analyze whether this affects the model's performance, we categorize models into two regimes: calibratable and non-calibratable, defined by bounds of Expected Calibration Error (ECE). In the calibratable regime, we propose a calibration-aware fine-tuning approach to achieve proper calibration without compromising LLMs' performance. However, as models are further fine-tuned for better performance, they enter the non-calibratable regime. For this case, we develop an EM-algorithm-based ECE regularization for the fine-tuning loss to maintain low calibration error. Extensive experiments validate the effectiveness of the proposed methods.
Abstract:LLM ensembles are widely used for LLM judges. However, how to estimate their accuracy, especially in an efficient way, is unknown. In this paper, we present a principled maximum a posteriori (MAP) framework for an economical and precise estimation of the performance of LLM ensemble judgment. We first propose a mixture of Beta-Binomial distributions to model the judgment distribution, revising from the vanilla Binomial distribution. Next, we introduce a conformal prediction-driven approach that enables adaptive stopping during iterative sampling to balance accuracy with efficiency. Furthermore, we design a prior transfer mechanism that utilizes learned distributions on open-source datasets to improve estimation on a target dataset when only scarce annotations are available. Finally, we present BetaConform, a framework that integrates our distribution assumption, adaptive stopping, and the prior transfer mechanism to deliver a theoretically guaranteed distribution estimation of LLM ensemble judgment with minimum labeled samples. BetaConform is also validated empirically. For instance, with only 10 samples from the TruthfulQA dataset, for a Llama ensembled judge, BetaConform gauges its performance with error margin as small as 3.37%.
Abstract:Aligning large language models (LLMs) with diverse human preferences is critical for ensuring fairness and informed outcomes when deploying these models for decision-making. In this paper, we seek to uncover fundamental statistical limits concerning aligning LLMs with human preferences, with a focus on the probabilistic representation of human preferences and the preservation of diverse preferences in aligned LLMs. We first show that human preferences can be represented by a reward model if and only if the preference among LLM-generated responses is free of any Condorcet cycle. Moreover, we prove that Condorcet cycles exist with probability converging to one exponentially fast under a probabilistic preference model, thereby demonstrating the impossibility of fully aligning human preferences using reward-based approaches such as reinforcement learning from human feedback. Next, we explore the conditions under which LLMs would employ mixed strategies -- meaning they do not collapse to a single response -- when aligned in the limit using a non-reward-based approach, such as Nash learning from human feedback (NLHF). We identify a necessary and sufficient condition for mixed strategies: the absence of a response that is preferred over all others by a majority. As a blessing, we prove that this condition holds with high probability under the probabilistic preference model, thereby highlighting the statistical possibility of preserving minority preferences without explicit regularization in aligning LLMs. Finally, we leverage insights from our statistical results to design a novel, computationally efficient algorithm for finding Nash equilibria in aligning LLMs with NLHF. Our experiments show that Llama-3.2-1B, aligned with our algorithm, achieves a win rate of 60.55\% against the base model.
Abstract:Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
Abstract:Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
Abstract:The widespread adoption of large language models (LLMs) has created an urgent need for robust tools to detect LLM-generated text, especially in light of \textit{paraphrasing} techniques that often evade existing detection methods. To address this challenge, we present a novel semantic-enhanced framework for detecting LLM-generated text (SEFD) that leverages a retrieval-based mechanism to fully utilize text semantics. Our framework improves upon existing detection methods by systematically integrating retrieval-based techniques with traditional detectors, employing a carefully curated retrieval mechanism that strikes a balance between comprehensive coverage and computational efficiency. We showcase the effectiveness of our approach in sequential text scenarios common in real-world applications, such as online forums and Q\&A platforms. Through comprehensive experiments across various LLM-generated texts and detection methods, we demonstrate that our framework substantially enhances detection accuracy in paraphrasing scenarios while maintaining robustness for standard LLM-generated content.
Abstract:Multimodal learning has gained increasing importance across various fields, offering the ability to integrate data from diverse sources such as images, text, and personalized records, which are frequently observed in medical domains. However, in scenarios where some modalities are missing, many existing frameworks struggle to accommodate arbitrary modality combinations, often relying heavily on a single modality or complete data. This oversight of potential modality combinations limits their applicability in real-world situations. To address this challenge, we propose Flex-MoE (Flexible Mixture-of-Experts), a new framework designed to flexibly incorporate arbitrary modality combinations while maintaining robustness to missing data. The core idea of Flex-MoE is to first address missing modalities using a new missing modality bank that integrates observed modality combinations with the corresponding missing ones. This is followed by a uniquely designed Sparse MoE framework. Specifically, Flex-MoE first trains experts using samples with all modalities to inject generalized knowledge through the generalized router ($\mathcal{G}$-Router). The $\mathcal{S}$-Router then specializes in handling fewer modality combinations by assigning the top-1 gate to the expert corresponding to the observed modality combination. We evaluate Flex-MoE on the ADNI dataset, which encompasses four modalities in the Alzheimer's Disease domain, as well as on the MIMIC-IV dataset. The results demonstrate the effectiveness of Flex-MoE highlighting its ability to model arbitrary modality combinations in diverse missing modality scenarios. Code is available at https://github.com/UNITES-Lab/flex-moe.