Abstract:How can we measure the generalization of models to a variety of unseen tasks when provided with their language instructions? To facilitate progress in this goal, we introduce Natural-Instructions v2, a collection of 1,600+ diverse language tasks and their expert written instructions. More importantly, the benchmark covers 70+ distinct task types, such as tagging, in-filling, and rewriting. This benchmark is collected with contributions of NLP practitioners in the community and through an iterative peer review process to ensure their quality. This benchmark enables large-scale evaluation of cross-task generalization of the models -- training on a subset of tasks and evaluating on the remaining unseen ones. For instance, we are able to rigorously quantify generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances, and model sizes. As a by-product of these experiments. we introduce Tk-Instruct, an encoder-decoder Transformer that is trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples) which outperforms existing larger models on our benchmark. We hope this benchmark facilitates future progress toward more general-purpose language understanding models.
Abstract:Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario. Drawing inspiration from GLUE that was proposed in the context of natural language understanding, we propose NumGLUE, a multi-task benchmark that evaluates the performance of AI systems on eight different tasks, that at their core require simple arithmetic understanding. We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models performing significantly worse than humans (lower by 46.4%). Further, NumGLUE promotes sharing knowledge across tasks, especially those with limited training data as evidenced by the superior performance (average gain of 3.4% on each task) when a model is jointly trained on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language, a first step towards being able to perform more complex mathematical reasoning.
Abstract:Knowledge of questions' difficulty level helps a teacher in several ways, such as estimating students' potential quickly by asking carefully selected questions and improving quality of examination by modifying trivial and hard questions. Can we extract such benefits of instance difficulty in NLP? To this end, we conduct Instance-Level Difficulty Analysis of Evaluation data (ILDAE) in a large-scale setup of 23 datasets and demonstrate its five novel applications: 1) conducting efficient-yet-accurate evaluations with fewer instances saving computational cost and time, 2) improving quality of existing evaluation datasets by repairing erroneous and trivial instances, 3) selecting the best model based on application requirements, 4) analyzing dataset characteristics for guiding future data creation, 5) estimating Out-of-Domain performance reliably. Comprehensive experiments for these applications result in several interesting findings, such as evaluation using just 5% instances (selected via ILDAE) achieves as high as 0.93 Kendall correlation with evaluation using complete dataset and computing weighted accuracy using difficulty scores leads to 5.2% higher correlation with Out-of-Domain performance. We release the difficulty scores and hope our analyses and findings will bring more attention to this important yet understudied field of leveraging instance difficulty in evaluations.
Abstract:In order to equip NLP systems with selective prediction capability, several task-specific approaches have been proposed. However, which approaches work best across tasks or even if they consistently outperform the simplest baseline 'MaxProb' remains to be explored. To this end, we systematically study 'selective prediction' in a large-scale setup of 17 datasets across several NLP tasks. Through comprehensive experiments under in-domain (IID), out-of-domain (OOD), and adversarial (ADV) settings, we show that despite leveraging additional resources (held-out data/computation), none of the existing approaches consistently and considerably outperforms MaxProb in all three settings. Furthermore, their performance does not translate well across tasks. For instance, Monte-Carlo Dropout outperforms all other approaches on Duplicate Detection datasets but does not fare well on NLI datasets, especially in the OOD setting. Thus, we recommend that future selective prediction approaches should be evaluated across tasks and settings for reliable estimation of their capabilities.
Abstract:Transformer-based models have achieved impressive performance on various Natural Language Inference (NLI) benchmarks, when trained on respective training datasets. However, in certain cases, training samples may not be available or collecting them could be time-consuming and resource-intensive. In this work, we address this challenge and present an explorative study on unsupervised NLI, a paradigm in which no human-annotated training samples are available. We investigate NLI under three challenging settings: PH, P, and NPH that differ in the extent of unlabeled data available for learning. As a solution, we propose a procedural data generation approach that leverages a set of sentence transformations to collect PHL (Premise, Hypothesis, Label) triplets for training NLI models, bypassing the need for human-annotated training datasets. Comprehensive experiments show that this approach results in accuracies of 66.75%, 65.9%, 65.39% in PH, P, NPH settings respectively, outperforming all existing baselines. Furthermore, fine-tuning our models with as little as ~0.1% of the training dataset (500 samples) leads to 12.2% higher accuracy than the model trained from scratch on the same 500 instances.
Abstract:Hybrid transceiver design in multiple-input multiple-output (MIMO) Tera-Hertz (THz) systems relying on sparse channel state information (CSI) estimation techniques is conceived. To begin with, a practical MIMO channel model is developed for the THz band that incorporates its molecular absorption and reflection losses, as well as its non-line-of-sight (NLoS) rays associated with its diffused components. Subsequently, a novel CSI estimation model is derived by exploiting the angular-sparsity of the THz MIMO channel. Then an orthogonal matching pursuit (OMP)-based framework is conceived, followed by designing a sophisticated Bayesian learning (BL)-based approach for efficient estimation of the sparse THz MIMO channel. The Bayesian Cramer-Rao Lower Bound (BCRLB) is also determined for benchmarking the performance of the CSI estimation techniques developed. Finally, an optimal hybrid transmit precoder and receiver combiner pair is designed, which directly relies on the beamspace domain CSI estimates and only requires limited feedback. Finally, simulation results are provided for quantifying the improved mean square error (MSE), spectral-efficiency (SE) and bit-error rate (BER) performance for transmission on practical THz MIMO channel obtained from the HIgh resolution TRANsmission (HITRAN)-database.
Abstract:Standard NLP tasks do not incorporate several common real-world scenarios such as seeking clarifications about the question, taking advantage of clues, abstaining in order to avoid incorrect answers, etc. This difference in task formulation hinders the adoption of NLP systems in real-world settings. In this work, we take a step towards bridging this gap and present a multi-stage task that simulates a typical human-human questioner-responder interaction such as an interview. Specifically, the system is provided with question simplifications, knowledge statements, examples, etc. at various stages to improve its prediction when it is not sufficiently confident. We instantiate the proposed task in Natural Language Inference setting where a system is evaluated on both in-domain and out-of-domain (OOD) inputs. We conduct comprehensive experiments and find that the multi-stage formulation of our task leads to OOD generalization performance improvement up to 2.29% in Stage 1, 1.91% in Stage 2, 54.88% in Stage 3, and 72.02% in Stage 4 over the standard unguided prediction. However, our task leaves a significant challenge for NLP researchers to further improve OOD performance at each stage.
Abstract:A recent work has shown that transformers are able to "reason" with facts and rules in a limited setting where the rules are natural language expressions of conjunctions of conditions implying a conclusion. Since this suggests that transformers may be used for reasoning with knowledge given in natural language, we do a rigorous evaluation of this with respect to a common form of knowledge and its corresponding reasoning -- the reasoning about effects of actions. Reasoning about action and change has been a top focus in the knowledge representation subfield of AI from the early days of AI and more recently it has been a highlight aspect in common sense question answering. We consider four action domains (Blocks World, Logistics, Dock-Worker-Robots and a Generic Domain) in natural language and create QA datasets that involve reasoning about the effects of actions in these domains. We investigate the ability of transformers to (a) learn to reason in these domains and (b) transfer that learning from the generic domains to the other domains.
Abstract:In order to make AI systems more reliable and their adoption in safety critical applications possible, it is essential to impart the capability to abstain from answering when their prediction is likely to be incorrect and seek human intervention. Recently proposed "selective answering" techniques model calibration as a binary classification task. We argue that, not all incorrectly answered questions are incorrect to the same extent and the same is true for correctly answered questions. Hence, treating all correct predictions equally and all incorrect predictions equally constraints calibration. In this work, we propose a methodology that incorporates the degree of correctness, shifting away from classification labels as it directly tries to predict the probability of model's prediction being correct. We show the efficacy of the proposed method on existing Natural Language Inference (NLI) datasets by training on SNLI and evaluating on MNLI mismatched and matched datasets. Our approach improves area under the curve (AUC) of risk-coverage plot by 10.22\% and 8.06\% over maxProb with respect to the maximum possible improvement on MNLI mismatched and matched set respectively. In order to evaluate our method on Out of Distribution (OOD) datasets, we propose a novel setup involving questions with a variety of reasoning skills. Our setup includes a test set for each of the five reasoning skills: numerical, logical, qualitative, abductive and commonsense. We select confidence threshold for each of the approaches where the in-domain accuracy (SNLI) is 99\%. Our results show that, the proposed method outperforms existing approaches by abstaining on 2.6\% more OOD questions at respective confidence thresholds.
Abstract:Numerical reasoning is often important to accurately understand the world. Recently, several format-specific datasets have been proposed, such as numerical reasoning in the settings of Natural Language Inference (NLI), Reading Comprehension (RC), and Question Answering (QA). Several format-specific models and architectures in response to those datasets have also been proposed. However, there exists a strong need for a benchmark which can evaluate the abilities of models, in performing question format independent numerical reasoning, as (i) the numerical reasoning capabilities we want to teach are not controlled by question formats, (ii) for numerical reasoning technology to have the best possible application, it must be able to process language and reason in a way that is not exclusive to a single format, task, dataset or domain. In pursuit of this goal, we introduce NUMBERGAME, a multifaceted benchmark to evaluate model performance across numerical reasoning tasks of eight diverse formats. We add four existing question types in our compilation. Two of the new types we add are about questions that require external numerical knowledge, commonsense knowledge and domain knowledge. For building a more practical numerical reasoning system, NUMBERGAME demands four capabilities beyond numerical reasoning: (i) detecting question format directly from data (ii) finding intermediate common format to which every format can be converted (iii) incorporating commonsense knowledge (iv) handling data imbalance across formats. We build several baselines, including a new model based on knowledge hunting using a cheatsheet. However, all baselines perform poorly in contrast to the human baselines, indicating the hardness of our benchmark. Our work takes forward the recent progress in generic system development, demonstrating the scope of these under-explored tasks.