Alert button
Picture for Yeganeh Kordi

Yeganeh Kordi

Alert button

Self-Instruct: Aligning Language Model with Self Generated Instructions

Dec 20, 2022
Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, Hannaneh Hajishirzi

Figure 1 for Self-Instruct: Aligning Language Model with Self Generated Instructions
Figure 2 for Self-Instruct: Aligning Language Model with Self Generated Instructions
Figure 3 for Self-Instruct: Aligning Language Model with Self Generated Instructions
Figure 4 for Self-Instruct: Aligning Language Model with Self Generated Instructions

Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.

* work in progress 
Viaarxiv icon

Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks

Apr 16, 2022
Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Hannaneh Hajishirzi, Noah A. Smith, Daniel Khashabi

Figure 1 for Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks
Figure 2 for Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks
Figure 3 for Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks
Figure 4 for Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks

How can we measure the generalization of models to a variety of unseen tasks when provided with their language instructions? To facilitate progress in this goal, we introduce Natural-Instructions v2, a collection of 1,600+ diverse language tasks and their expert written instructions. More importantly, the benchmark covers 70+ distinct task types, such as tagging, in-filling, and rewriting. This benchmark is collected with contributions of NLP practitioners in the community and through an iterative peer review process to ensure their quality. This benchmark enables large-scale evaluation of cross-task generalization of the models -- training on a subset of tasks and evaluating on the remaining unseen ones. For instance, we are able to rigorously quantify generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances, and model sizes. As a by-product of these experiments. we introduce Tk-Instruct, an encoder-decoder Transformer that is trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples) which outperforms existing larger models on our benchmark. We hope this benchmark facilitates future progress toward more general-purpose language understanding models.

* 16 pages, 9 figures 
Viaarxiv icon

UnifiedQA-v2: Stronger Generalization via Broader Cross-Format Training

Feb 23, 2022
Daniel Khashabi, Yeganeh Kordi, Hannaneh Hajishirzi

Figure 1 for UnifiedQA-v2: Stronger Generalization via Broader Cross-Format Training

We present UnifiedQA-v2, a QA model built with the same process as UnifiedQA, except that it utilizes more supervision -- roughly 3x the number of datasets used for UnifiedQA. This generally leads to better in-domain and cross-domain results.

Viaarxiv icon