Abstract:Modular self-reconfigurable satellites refer to satellite clusters composed of individual modular units capable of altering their configurations. The configuration changes enable the execution of diverse tasks and mission objectives. Existing path planning algorithms for reconfiguration often suffer from high computational complexity, poor generalization capability, and limited support for diverse target configurations. To address these challenges, this paper proposes a goal-oriented reinforcement learning-based path planning algorithm. This algorithm is the first to address the challenge that previous reinforcement learning methods failed to overcome, namely handling multiple target configurations. Moreover, techniques such as Hindsight Experience Replay and Invalid Action Masking are incorporated to overcome the significant obstacles posed by sparse rewards and invalid actions. Based on these designs, our model achieves a 95% and 73% success rate in reaching arbitrary target configurations in a modular satellite cluster composed of four and six units, respectively.
Abstract:Imagine searching a collection of coins for quarters ($0.25$), dimes ($0.10$), nickels ($0.05$), and pennies ($0.01$)-a hybrid foraging task where observers look for multiple instances of multiple target types. In such tasks, how do target values and their prevalence influence foraging and eye movement behaviors (e.g., should you prioritize rare quarters or common nickels)? To explore this, we conducted human psychophysics experiments, revealing that humans are proficient reward foragers. Their eye fixations are drawn to regions with higher average rewards, fixation durations are longer on more valuable targets, and their cumulative rewards exceed chance, approaching the upper bound of optimal foragers. To probe these decision-making processes of humans, we developed a transformer-based Visual Forager (VF) model trained via reinforcement learning. Our VF model takes a series of targets, their corresponding values, and the search image as inputs, processes the images using foveated vision, and produces a sequence of eye movements along with decisions on whether to collect each fixated item. Our model outperforms all baselines, achieves cumulative rewards comparable to those of humans, and approximates human foraging behavior in eye movements and foraging biases within time-limited environments. Furthermore, stress tests on out-of-distribution tasks with novel targets, unseen values, and varying set sizes demonstrate the VF model's effective generalization. Our work offers valuable insights into the relationship between eye movements and decision-making, with our model serving as a powerful tool for further exploration of this connection. All data, code, and models will be made publicly available.