Abstract:It is a common practice in natural language processing to pre-train a single model on a general domain and then fine-tune it for downstream tasks. However, when it comes to Large Language Models, fine-tuning the entire model can be computationally expensive, resulting in very intensive energy consumption. As a result, several Parameter efficient fine-tuning (PEFT) approaches were recently proposed. One of the most popular approaches is low-rank adaptation (LoRA), where the key insight is decomposing the update weights of the pre-trained model into two low-rank matrices. However, the proposed approaches either use the same rank value across all different weight matrices or do not use any quantization technique, which has been shown to be one of the most important factors when it comes to a model's energy consumption. In this work, we propose Bayesian-LoRA (B-LoRA) which approaches matrix decomposition and quantization from a Bayesian perspective by employing a prior distribution on both quantization levels and rank values of the learned low-rank matrices. As a result, B-LoRA is able to fine-tune a pre-trained model on a specific downstream task, finding the optimal rank values and quantization levels for every low-rank matrix. We validate the proposed model fine-tuning a pre-trained DeBERTaV3 on the GLUE benchmark. Moreover, we compare it to relevant baselines and present both qualitative and quantitative results, showing how the proposed approach is able to learn optimal-rank quantized matrices. B-LoRA performs on par or better than baselines while reducing the total amount of bit operations of roughly 70% with respect to the baselines ones.
Abstract:Nowcasting leverages real-time atmospheric conditions to forecast weather over short periods. State-of-the-art models, including PySTEPS, encounter difficulties in accurately forecasting extreme weather events because of their unpredictable distribution patterns. In this study, we design a physics-informed neural network to perform precipitation nowcasting using the precipitation and meteorological data from the Royal Netherlands Meteorological Institute (KNMI). This model draws inspiration from the novel Physics-Informed Discriminator GAN (PID-GAN) formulation, directly integrating physics-based supervision within the adversarial learning framework. The proposed model adopts a GAN structure, featuring a Vector Quantization Generative Adversarial Network (VQ-GAN) and a Transformer as the generator, with a temporal discriminator serving as the discriminator. Our findings demonstrate that the PID-GAN model outperforms numerical and SOTA deep generative models in terms of precipitation nowcasting downstream metrics.
Abstract:This paper presents an innovative approach to extreme precipitation nowcasting by employing Transformer-based generative models, namely NowcastingGPT with Extreme Value Loss (EVL) regularization. Leveraging a comprehensive dataset from the Royal Netherlands Meteorological Institute (KNMI), our study focuses on predicting short-term precipitation with high accuracy. We introduce a novel method for computing EVL without assuming fixed extreme representations, addressing the limitations of current models in capturing extreme weather events. We present both qualitative and quantitative analyses, demonstrating the superior performance of the proposed NowcastingGPT-EVL in generating accurate precipitation forecasts, especially when dealing with extreme precipitation events. The code is available at \url{https://github.com/Cmeo97/NowcastingGPT}.
Abstract:Individuals, despite having varied life experiences and learning processes, can communicate effectively through languages. This study aims to explore the efficiency of language as a communication medium. We put forth two specific hypotheses: First, discrete messages are more effective than continuous ones when agents have diverse personal experiences. Second, communications using multiple discrete tokens are more advantageous than those using a single token. To valdate these hypotheses, we designed multi-agent machine learning experiments to assess communication efficiency using various information transmission methods between speakers and listeners. Our empirical findings indicate that, in scenarios where agents are exposed to different data, communicating through sentences composed of discrete tokens offers the best inter-agent communication efficiency. The limitations of our finding include lack of systematic advantages over other more sophisticated encoder-decoder model such as variational autoencoder and lack of evluation on non-image dataset, which we will leave for future studies.
Abstract:Uncovering data generative factors is the ultimate goal of disentanglement learning. Although many works proposed disentangling generative models able to uncover the underlying generative factors of a dataset, so far no one was able to uncover OOD generative factors (i.e., factors of variations that are not explicitly shown on the dataset). Moreover, the datasets used to validate these models are synthetically generated using a balanced mixture of some predefined generative factors, implicitly assuming that generative factors are uniformly distributed across the datasets. However, real datasets do not present this property. In this work we analyse the effect of using datasets with unbalanced generative factors, providing qualitative and quantitative results for widely used generative models. Moreover, we propose TC-VAE, a generative model optimized using a lower bound of the joint total correlation between the learned latent representations and the input data. We show that the proposed model is able to uncover OOD generative factors on different datasets and outperforms on average the related baselines in terms of downstream disentanglement metrics.
Abstract:In cooperative multi-agent reinforcement learning, a team of agents works together to achieve a common goal. Different environments or tasks may require varying degrees of coordination among agents in order to achieve the goal in an optimal way. The nature of coordination will depend on properties of the environment -- its spatial layout, distribution of obstacles, dynamics, etc. We term this variation of properties within an environment as heterogeneity. Existing literature has not sufficiently addressed the fact that different environments may have different levels of heterogeneity. We formalize the notions of coordination level and heterogeneity level of an environment and present HECOGrid, a suite of multi-agent RL environments that facilitates empirical evaluation of different MARL approaches across different levels of coordination and environmental heterogeneity by providing a quantitative control over coordination and heterogeneity levels of the environment. Further, we propose a Centralized Training Decentralized Execution learning approach called Stateful Active Facilitator (SAF) that enables agents to work efficiently in high-coordination and high-heterogeneity environments through a differentiable and shared knowledge source used during training and dynamic selection from a shared pool of policies. We evaluate SAF and compare its performance against baselines IPPO and MAPPO on HECOGrid. Our results show that SAF consistently outperforms the baselines across different tasks and different heterogeneity and coordination levels.
Abstract:In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another. In this paper, we propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance. To ensure that this facilitator does not become a centralized controller, agents are incentivized to reduce their dependence on the messages it conveys, and the messages can only influence the selection of a policy from a fixed set, not instantaneous actions given the policy. We demonstrate the strength of this architecture over existing baselines on several cooperative MARL environments.
Abstract:Adaptation to external and internal changes is major for robotic systems in uncertain environments. Here we present a novel multisensory active inference torque controller for industrial arms that shows how prediction can be used to resolve adaptation. Our controller, inspired by the predictive brain hypothesis, improves the capabilities of current active inference approaches by incorporating learning and multimodal integration of low and high-dimensional sensor inputs (e.g., raw images) while simplifying the architecture. We performed a systematic evaluation of our model on a 7DoF Franka Emika Panda robot arm by comparing its behavior with previous active inference baselines and classic controllers, analyzing both qualitatively and quantitatively adaptation capabilities and control accuracy. Results showed improved control accuracy in goal-directed reaching with high noise rejection due to multimodal filtering, and adaptability to dynamical inertial changes, elasticity constraints and human disturbances without the need to relearn the model nor parameter retuning.
Abstract:Active inference is a mathematical framework which originated in computational neuroscience as a theory of how the brain implements action, perception and learning. Recently, it has been shown to be a promising approach to the problems of state-estimation and control under uncertainty, as well as a foundation for the construction of goal-driven behaviours in robotics and artificial agents in general. Here, we review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning; describing current achievements with a particular focus on robotics. We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness. Furthermore, we connect this approach with other frameworks and discuss its expected benefits and challenges: a unified framework with functional biological plausibility using variational Bayesian inference.
Abstract:Active inference, a theoretical construct inspired by brain processing, is a promising alternative to control artificial agents. However, current methods do not yet scale to high-dimensional inputs in continuous control. Here we present a novel active inference torque controller for industrial arms that maintains the adaptive characteristics of previous proprioceptive approaches but also enables large-scale multimodal integration (e.g., raw images). We extended our previous mathematical formulation by including multimodal state representation learning using a linearly coupled multimodal variational autoencoder. We evaluated our model on a simulated 7DOF Franka Emika Panda robot arm and compared its behavior with a previous active inference baseline and the Panda built-in optimized controller. Results showed improved tracking and control in goal-directed reaching due to the increased representation power, high robustness to noise and adaptability in changes on the environmental conditions and robot parameters without the need to relearn the generative models nor parameters retuning.