Abstract:Purpose: The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. The use of computer vision approaches for the automatic recognition of perioperative events enables identification of bottlenecks for OR optimization. However, privacy concerns limit the use of computer vision for automated event detection from OR videos, which makes privacy-preserving approaches needed for OR workflow analysis. Methods: We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. In the first stage, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. In the second stage, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. We evaluate this method on an internal dataset of 38 simulated surgical trials with five event classes. Results: Our results indicate that this DT-based approach to the OR event detection model achieves performance on par and sometimes even better than raw RGB video-based models on detecting OR events. Conclusion: DTs enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and they can potentially enhance model generalizability by mitigating domain-specific appearance differences.
Abstract:Surgical tool segmentation and action recognition are fundamental building blocks in many computer-assisted intervention applications, ranging from surgical skills assessment to decision support systems. Nowadays, learning-based action recognition and segmentation approaches outperform classical methods, relying, however, on large, annotated datasets. Furthermore, action recognition and tool segmentation algorithms are often trained and make predictions in isolation from each other, without exploiting potential cross-task relationships. With the EndoVis 2022 SAR-RARP50 challenge, we release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP). The aim of the challenge is twofold. First, to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain. Second, to further explore the potential of multitask-based learning approaches and determine their comparative advantage against their single-task counterparts. A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation.