Alert button
Picture for Mashrur Chowdhury

Mashrur Chowdhury

Alert button

Development and Evaluation of Ensemble Learning-based Environmental Methane Detection and Intensity Prediction Models

Add code
Bookmark button
Alert button
Dec 18, 2023
Reek Majumder, Jacquan Pollard, M Sabbir Salek, David Werth, Gurcan Comert, Adrian Gale, Sakib Mahmud Khan, Samuel Darko, Mashrur Chowdhury

Viaarxiv icon

A Hybrid Defense Method against Adversarial Attacks on Traffic Sign Classifiers in Autonomous Vehicles

Add code
Bookmark button
Alert button
Apr 25, 2022
Zadid Khan, Mashrur Chowdhury, Sakib Mahmud Khan

Figure 1 for A Hybrid Defense Method against Adversarial Attacks on Traffic Sign Classifiers in Autonomous Vehicles
Figure 2 for A Hybrid Defense Method against Adversarial Attacks on Traffic Sign Classifiers in Autonomous Vehicles
Figure 3 for A Hybrid Defense Method against Adversarial Attacks on Traffic Sign Classifiers in Autonomous Vehicles
Figure 4 for A Hybrid Defense Method against Adversarial Attacks on Traffic Sign Classifiers in Autonomous Vehicles
Viaarxiv icon

Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection

Add code
Bookmark button
Alert button
Oct 14, 2021
Mhafuzul Islam, Mashrur Chowdhury, Zadid Khan, Sakib Mahmud Khan

Figure 1 for Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection
Figure 2 for Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection
Figure 3 for Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection
Figure 4 for Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection
Viaarxiv icon

A Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles

Add code
Bookmark button
Alert button
Aug 19, 2021
Sagar Dasgupta, Mizanur Rahman, Mhafuzul Islam, Mashrur Chowdhury

Figure 1 for A Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Figure 2 for A Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Figure 3 for A Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Figure 4 for A Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Viaarxiv icon

Hybrid Quantum-Classical Neural Network for Incident Detection

Add code
Bookmark button
Alert button
Aug 02, 2021
Zadid Khan, Sakib Mahmud Khan, Jean Michel Tine, Ayse Turhan Comert, Diamon Rice, Gurcan Comert, Dimitra Michalaka, Judith Mwakalonge, Reek Majumdar, Mashrur Chowdhury

Figure 1 for Hybrid Quantum-Classical Neural Network for Incident Detection
Figure 2 for Hybrid Quantum-Classical Neural Network for Incident Detection
Figure 3 for Hybrid Quantum-Classical Neural Network for Incident Detection
Figure 4 for Hybrid Quantum-Classical Neural Network for Incident Detection
Viaarxiv icon

Hybrid Classical-Quantum Deep Learning Models for Autonomous Vehicle Traffic Image Classification Under Adversarial Attack

Add code
Bookmark button
Alert button
Aug 02, 2021
Reek Majumder, Sakib Mahmud Khan, Fahim Ahmed, Zadid Khan, Frank Ngeni, Gurcan Comert, Judith Mwakalonge, Dimitra Michalaka, Mashrur Chowdhury

Figure 1 for Hybrid Classical-Quantum Deep Learning Models for Autonomous Vehicle Traffic Image Classification Under Adversarial Attack
Figure 2 for Hybrid Classical-Quantum Deep Learning Models for Autonomous Vehicle Traffic Image Classification Under Adversarial Attack
Figure 3 for Hybrid Classical-Quantum Deep Learning Models for Autonomous Vehicle Traffic Image Classification Under Adversarial Attack
Figure 4 for Hybrid Classical-Quantum Deep Learning Models for Autonomous Vehicle Traffic Image Classification Under Adversarial Attack
Viaarxiv icon

Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles

Add code
Bookmark button
Alert button
Aug 02, 2021
Sakib Mahmud Khan, Gurcan Comert, Mashrur Chowdhury

Figure 1 for Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles
Figure 2 for Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles
Figure 3 for Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles
Figure 4 for Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles
Viaarxiv icon

Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles

Add code
Bookmark button
Alert button
Jun 05, 2021
Sagar Dasgupta, Mizanur Rahman, Mhafuzul Islam, Mashrur Chowdhury

Figure 1 for Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Figure 2 for Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Figure 3 for Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Figure 4 for Sensor Fusion-based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles
Viaarxiv icon

Assessment of System-Level Cyber Attack Vulnerability for Connected and Autonomous Vehicles Using Bayesian Networks

Add code
Bookmark button
Alert button
Nov 18, 2020
Gurcan Comert, Mashrur Chowdhury, David M. Nicol

Figure 1 for Assessment of System-Level Cyber Attack Vulnerability for Connected and Autonomous Vehicles Using Bayesian Networks
Figure 2 for Assessment of System-Level Cyber Attack Vulnerability for Connected and Autonomous Vehicles Using Bayesian Networks
Figure 3 for Assessment of System-Level Cyber Attack Vulnerability for Connected and Autonomous Vehicles Using Bayesian Networks
Figure 4 for Assessment of System-Level Cyber Attack Vulnerability for Connected and Autonomous Vehicles Using Bayesian Networks
Viaarxiv icon

Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles

Add code
Bookmark button
Alert button
Oct 16, 2020
Sagar Dasgupta, Mizanur Rahman, Mhafuzul Islam, Mashrur Chowdhury

Figure 1 for Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles
Figure 2 for Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles
Figure 3 for Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles
Figure 4 for Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles
Viaarxiv icon