Graduate Student, Glenn Department of Civil Engineering, Clemson University
Abstract:Global Navigation Satellite Systems (GNSS) are critical for Positioning, Navigation, and Timing (PNT) applications. However, GNSS are highly vulnerable to spoofing attacks, where adversaries transmit counterfeit signals to mislead receivers. Such attacks can lead to severe consequences, including misdirected navigation, compromised data integrity, and operational disruptions. Most existing spoofing detection methods depend on supervised learning techniques and struggle to detect novel, evolved, and unseen attacks. To overcome this limitation, we develop a zero-day spoofing detection method using a Hybrid Quantum-Classical Autoencoder (HQC-AE), trained solely on authentic GNSS signals without exposure to spoofed data. By leveraging features extracted during the tracking stage, our method enables proactive detection before PNT solutions are computed. We focus on spoofing detection in static GNSS receivers, which are particularly susceptible to time-push spoofing attacks, where attackers manipulate timing information to induce incorrect time computations at the receiver. We evaluate our model against different unseen time-push spoofing attack scenarios: simplistic, intermediate, and sophisticated. Our analysis demonstrates that the HQC-AE consistently outperforms its classical counterpart, traditional supervised learning-based models, and existing unsupervised learning-based methods in detecting zero-day, unseen GNSS time-push spoofing attacks, achieving an average detection accuracy of 97.71% with an average false negative rate of 0.62% (when an attack occurs but is not detected). For sophisticated spoofing attacks, the HQC-AE attains an accuracy of 98.23% with a false negative rate of 1.85%. These findings highlight the effectiveness of our method in proactively detecting zero-day GNSS time-push spoofing attacks across various stationary GNSS receiver platforms.
Abstract:Computer Vision plays a critical role in ensuring the safe navigation of autonomous vehicles (AVs). An AV perception module is responsible for capturing and interpreting the surrounding environment to facilitate safe navigation. This module enables AVs to recognize traffic signs, traffic lights, and various road users. However, the perception module is vulnerable to adversarial attacks, which can compromise their accuracy and reliability. One such attack is the adversarial patch attack (APA), a physical attack in which an adversary strategically places a specially crafted sticker on an object to deceive object classifiers. In APA, an adversarial patch is positioned on a target object, leading the classifier to misidentify it. Such an APA can cause AVs to misclassify traffic signs, leading to catastrophic incidents. To enhance the security of an AV perception system against APAs, this study develops a Generative Adversarial Network (GAN)-based single-stage defense strategy for traffic sign classification. This approach is tailored to defend against APAs on different classes of traffic signs without prior knowledge of a patch's design. This study found this approach to be effective against patches of varying sizes. Our experimental analysis demonstrates that the defense strategy presented in this paper improves the classifier's accuracy under APA conditions by up to 80.8% and enhances overall classification accuracy for all the traffic signs considered in this study by 58%, compared to a classifier without any defense mechanism. Our defense strategy is model-agnostic, making it applicable to any traffic sign classifier, regardless of the underlying classification model.




Abstract:This study investigates crash severity risk modeling strategies for work zones involving large vehicles (i.e., trucks, buses, and vans) when there are crash data imbalance between low-severity (LS) and high-severity (HS) crashes. We utilized crash data, involving large vehicles in South Carolina work zones for the period between 2014 and 2018, which included 4 times more LS crashes compared to HS crashes. The objective of this study is to explore crash severity prediction performance of various models under different feature selection and data balancing techniques. The findings of this study highlight a disparity between LS and HS predictions, with less-accurate prediction of HS crashes compared to LS crashes due to class imbalance and feature overlaps between LS and HS crashes. Combining features from multiple feature selection techniques: statistical correlation, feature importance, recursive elimination, statistical tests, and mutual information, slightly improves HS crash prediction performance. Data balancing techniques such as NearMiss-1 and RandomUnderSampler, maximize HS recall when paired with certain prediction models, such as Bayesian Mixed Logit (BML), NeuralNet, and RandomForest, making them suitable for HS crash prediction. Conversely, RandomOverSampler, HS Class Weighting, and Kernel-based Synthetic Minority Oversampling (K-SMOTE), used with certain prediction models such as BML, CatBoost, and LightGBM, achieve a balanced performance, defined as achieving an equitable trade-off between LS and HS prediction performance metrics. These insights provide safety analysts with guidance to select models, feature selection techniques, and data balancing techniques that align with their specific safety objectives, offering a robust foundation for enhancing work-zone crash severity prediction.