Abstract:As connected and automated transportation systems evolve, there is a growing need for federal and state authorities to revise existing laws and develop new statutes to address emerging cybersecurity and data privacy challenges. This study introduces a Retrieval-Augmented Generation (RAG) based Large Language Model (LLM) framework designed to support policymakers by extracting relevant legal content and generating accurate, inquiry-specific responses. The framework focuses on reducing hallucinations in LLMs by using a curated set of domain-specific questions to guide response generation. By incorporating retrieval mechanisms, the system enhances the factual grounding and specificity of its outputs. Our analysis shows that the proposed RAG-based LLM outperforms leading commercial LLMs across four evaluation metrics: AlignScore, ParaScore, BERTScore, and ROUGE, demonstrating its effectiveness in producing reliable and context-aware legal insights. This approach offers a scalable, AI-driven method for legislative analysis, supporting efforts to update legal frameworks in line with advancements in transportation technologies.
Abstract:People exhibit unique emotional responses. In the same scenario, the emotional reactions of two individuals can be either similar or vastly different. For instance, consider one person's reaction to an invitation to smoke versus another person's response to a query about their sleep quality. The identification of these individual traits through the observation of common physical parameters opens the door to a wide range of applications, including psychological analysis, criminology, disease prediction, addiction control, and more. While there has been previous research in the fields of psychometrics, inertial sensors, computer vision, and audio analysis, this paper introduces a novel technique for identifying human traits in real time using brainwave data. To achieve this, we begin with an extensive study of brainwave data collected from 80 participants using a portable EEG headset. We also conduct a statistical analysis of the collected data utilizing box plots. Our analysis uncovers several new insights, leading us to a groundbreaking unified approach for identifying diverse human traits by leveraging machine learning techniques on EEG data. Our analysis demonstrates that this proposed solution achieves high accuracy. Moreover, we explore two deep-learning models to compare the performance of our solution. Consequently, we have developed an integrated, real-time trait identification solution using EEG data, based on the insights from our analysis. To validate our approach, we conducted a rigorous user evaluation with an additional 20 participants. The outcomes of this evaluation illustrate both high accuracy and favorable user ratings, emphasizing the robust potential of our proposed method to serve as a versatile solution for human trait identification.