Abstract:Optimizing policies based on human preferences is key to aligning language models with human intent. This work focuses on reward modeling, a core component in reinforcement learning from human feedback (RLHF), and offline preference optimization, such as direct preference optimization. Conventional approaches typically assume accurate annotations. However, real-world preference data often contains noise due to human errors or biases. We propose a principled framework for robust policy optimization under noisy preferences, viewing reward modeling as a classification problem. This allows us to leverage symmetric losses, known for their robustness to label noise in classification, leading to our Symmetric Preference Optimization (SymPO) method. We prove that symmetric losses enable successful policy optimization even under noisy labels, as the resulting reward remains rank-preserving -- a property sufficient for policy improvement. Experiments on synthetic and real-world tasks demonstrate the effectiveness of SymPO.
Abstract:Publishing a large language model (LLM) benchmark on the Internet risks contaminating future LLMs: the benchmark may be unintentionally (or intentionally) used to train or select a model. A common mitigation is to keep the benchmark private and let participants submit their models or predictions to the organizers. However, this strategy will require trust in a single organization and still permits test-set overfitting through repeated queries. To overcome this issue, we propose a way to publish benchmarks without completely disclosing the ground-truth answers to the questions, while still maintaining the ability to openly evaluate LLMs. Our main idea is to inject randomness to the answers by preparing several logically correct answers, and only include one of them as the solution in the benchmark. This reduces the best possible accuracy, i.e., Bayes accuracy, of the benchmark. Not only is this helpful to keep us from disclosing the ground truth, but this approach also offers a test for detecting data contamination. In principle, even fully capable models should not surpass the Bayes accuracy. If a model surpasses this ceiling despite this expectation, this is a strong signal of data contamination. We present experimental evidence that our method can detect data contamination accurately on a wide range of benchmarks, models, and training methodologies.
Abstract:Recent advancements in Large Language Models (LLMs) have revealed new capabilities and opportunities across the technological landscape. However, the practicality of very large LLMs is challenged by their high compute cost, which does not justify the benefits given their limited capability compared to humans. While smaller, more practical LLMs have shown potential in financial analysis, though they are not yet fully proficient, as evidenced by their near-passing performance on the Chartered Financial Analyst (CFA) exam. In this work, we present Financial Analyst Extension to our Text Hyperlocally Augmented Large Language Extension (THaLLE), a series of 8B LLMs consistently achieving highest performance on mock CFA exams against models of comparable size. We thoroughly document the fine-tuning techniques used to facilitate future research. Additionally, we introduce the use of Flare CFA, a publicly available dataset for evaluating LLMs as a financial advisor.