Abstract:Learning Gaussian Mixture Models (GMMs) is a fundamental problem in machine learning, with the Expectation-Maximization (EM) algorithm and its popular variant gradient EM being arguably the most widely used algorithms in practice. In the exact-parameterized setting, where both the ground truth GMM and the learning model have the same number of components $m$, a vast line of work has aimed to establish rigorous recovery guarantees for EM. However, global convergence has only been proven for the case of $m=2$, and EM is known to fail to recover the ground truth when $m\geq 3$. In this paper, we consider the $\textit{over-parameterized}$ setting, where the learning model uses $n>m$ components to fit an $m$-component ground truth GMM. In contrast to the exact-parameterized case, we provide a rigorous global convergence guarantee for gradient EM. Specifically, for any well separated GMMs in general position, we prove that with only mild over-parameterization $n = \Omega(m\log m)$, randomly initialized gradient EM converges globally to the ground truth at a polynomial rate with polynomial samples. Our analysis proceeds in two stages and introduces a suite of novel tools for Gaussian Mixture analysis. We use Hermite polynomials to study the dynamics of gradient EM and employ tensor decomposition to characterize the geometric landscape of the likelihood loss. This is the first global convergence and recovery result for EM or Gradient EM beyond the special case of $m=2$.
Abstract:We study the gradient Expectation-Maximization (EM) algorithm for Gaussian Mixture Models (GMM) in the over-parameterized setting, where a general GMM with $n>1$ components learns from data that are generated by a single ground truth Gaussian distribution. While results for the special case of 2-Gaussian mixtures are well-known, a general global convergence analysis for arbitrary $n$ remains unresolved and faces several new technical barriers since the convergence becomes sub-linear and non-monotonic. To address these challenges, we construct a novel likelihood-based convergence analysis framework and rigorously prove that gradient EM converges globally with a sublinear rate $O(1/\sqrt{t})$. This is the first global convergence result for Gaussian mixtures with more than $2$ components. The sublinear convergence rate is due to the algorithmic nature of learning over-parameterized GMM with gradient EM. We also identify a new emerging technical challenge for learning general over-parameterized GMM: the existence of bad local regions that can trap gradient EM for an exponential number of steps.
Abstract:We revisit the problem of learning a single neuron with ReLU activation under Gaussian input with square loss. We particularly focus on the over-parameterization setting where the student network has $n\ge 2$ neurons. We prove the global convergence of randomly initialized gradient descent with a $O\left(T^{-3}\right)$ rate. This is the first global convergence result for this problem beyond the exact-parameterization setting ($n=1$) in which the gradient descent enjoys an $\exp(-\Omega(T))$ rate. Perhaps surprisingly, we further present an $\Omega\left(T^{-3}\right)$ lower bound for randomly initialized gradient flow in the over-parameterization setting. These two bounds jointly give an exact characterization of the convergence rate and imply, for the first time, that over-parameterization can exponentially slow down the convergence rate. To prove the global convergence, we need to tackle the interactions among student neurons in the gradient descent dynamics, which are not present in the exact-parameterization case. We use a three-phase structure to analyze GD's dynamics. Along the way, we prove gradient descent automatically balances student neurons, and use this property to deal with the non-smoothness of the objective function. To prove the convergence rate lower bound, we construct a novel potential function that characterizes the pairwise distances between the student neurons (which cannot be done in the exact-parameterization case). We show this potential function converges slowly, which implies the slow convergence rate of the loss function.