LongEval-Retrieval is a Web document retrieval benchmark that focuses on continuous retrieval evaluation. This test collection is intended to be used to study the temporal persistence of Information Retrieval systems and will be used as the test collection in the Longitudinal Evaluation of Model Performance Track (LongEval) at CLEF 2023. This benchmark simulates an evolving information system environment - such as the one a Web search engine operates in - where the document collection, the query distribution, and relevance all move continuously, while following the Cranfield paradigm for offline evaluation. To do that, we introduce the concept of a dynamic test collection that is composed of successive sub-collections each representing the state of an information system at a given time step. In LongEval-Retrieval, each sub-collection contains a set of queries, documents, and soft relevance assessments built from click models. The data comes from Qwant, a privacy-preserving Web search engine that primarily focuses on the French market. LongEval-Retrieval also provides a 'mirror' collection: it is initially constructed in the French language to benefit from the majority of Qwant's traffic, before being translated to English. This paper presents the creation process of LongEval-Retrieval and provides baseline runs and analysis.
We present Charles University submissions to the WMT22 General Translation Shared Task on Czech-Ukrainian and Ukrainian-Czech machine translation. We present two constrained submissions based on block back-translation and tagged back-translation and experiment with rule-based romanization of Ukrainian. Our results show that the romanization only has a minor effect on the translation quality. Further, we describe Charles Translator, a system that was developed in March 2022 as a response to the migration from Ukraine to the Czech Republic. Compared to our constrained systems, it did not use the romanization and used some proprietary data sources.
We present the CUNI-Bergamot submission for the WMT22 General translation task. We compete in English$\rightarrow$Czech direction. Our submission further explores block backtranslation techniques. Compared to the previous work, we measure performance in terms of COMET score and named entities translation accuracy. We evaluate performance of MBR decoding compared to traditional mixed backtranslation training and we show a possible synergy when using both of the techniques simultaneously. The results show that both approaches are effective means of improving translation quality and they yield even better results when combined.
This paper presents an overview of the shared task on multilingual coreference resolution associated with the CRAC 2022 workshop. Shared task participants were supposed to develop trainable systems capable of identifying mentions and clustering them according to identity coreference. The public edition of CorefUD 1.0, which contains 13 datasets for 10 languages, was used as the source of training and evaluation data. The CoNLL score used in previous coreference-oriented shared tasks was used as the main evaluation metric. There were 8 coreference prediction systems submitted by 5 participating teams; in addition, there was a competitive Transformer-based baseline system provided by the organizers at the beginning of the shared task. The winner system outperformed the baseline by 12 percentage points (in terms of the CoNLL scores averaged across all datasets for individual languages).
Sensitivity of deep-neural models to input noise is known to be a challenging problem. In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors. To mitigate this issue, models may leverage artificially noised data. However, the amount and type of generated noise has so far been determined arbitrarily. We therefore propose to model the errors statistically from grammatical-error-correction corpora. We present a thorough evaluation of several state-of-the-art NLP systems' robustness in multiple languages, with tasks including morpho-syntactic analysis, named entity recognition, neural machine translation, a subset of the GLUE benchmark and reading comprehension. We also compare two approaches to address the performance drop: a) training the NLP models with noised data generated by our framework; and b) reducing the input noise with external system for natural language correction. The code is released at https://github.com/ufal/kazitext.
We test the natural expectation that using MT in professional translation saves human processing time. The last such study was carried out by Sanchez-Torron and Koehn (2016) with phrase-based MT, artificially reducing the translation quality. In contrast, we focus on neural MT (NMT) of high quality, which has become the state-of-the-art approach since then and also got adopted by most translation companies. Through an experimental study involving over 30 professional translators for English -> Czech translation, we examine the relationship between NMT performance and post-editing time and quality. Across all models, we found that better MT systems indeed lead to fewer changes in the sentences in this industry setting. The relation between system quality and post-editing time is however not straightforward and, contrary to the results on phrase-based MT, BLEU is definitely not a stable predictor of the time or final output quality.
We present a new release of the Czech-English parallel corpus CzEng 2.0 consisting of over 2 billion words (2 "gigawords") in each language. The corpus contains document-level information and is filtered with several techniques to lower the amount of noise. In addition to the data in the previous version of CzEng, it contains new authentic and also high-quality synthetic parallel data. CzEng is freely available for research and educational purposes.
We describe our NMT systems submitted to the WMT19 shared task in English-Czech news translation. Our systems are based on the Transformer model implemented in either Tensor2Tensor (T2T) or Marian framework. We aimed at improving the adequacy and coherence of translated documents by enlarging the context of the source and target. Instead of translating each sentence independently, we split the document into possibly overlapping multi-sentence segments. In case of the T2T implementation, this "document-level"-trained system achieves a $+0.6$ BLEU improvement ($p<0.05$) relative to the same system applied on isolated sentences. To assess the potential effect document-level models might have on lexical coherence, we performed a semi-automatic analysis, which revealed only a few sentences improved in this aspect. Thus, we cannot draw any conclusions from this weak evidence.
We present our submission to the WMT19 Robustness Task. Our baseline system is the Charles University (CUNI) Transformer system trained for the WMT18 shared task on News Translation. Quantitative results show that the CUNI Transformer system is already far more robust to noisy input than the LSTM-based baseline provided by the task organizers. We further improved the performance of our model by fine-tuning on the in-domain noisy data without influencing the translation quality on the news domain.
This article describes our experiments in neural machine translation using the recent Tensor2Tensor framework and the Transformer sequence-to-sequence model (Vaswani et al., 2017). We examine some of the critical parameters that affect the final translation quality, memory usage, training stability and training time, concluding each experiment with a set of recommendations for fellow researchers. In addition to confirming the general mantra "more data and larger models", we address scaling to multiple GPUs and provide practical tips for improved training regarding batch size, learning rate, warmup steps, maximum sentence length and checkpoint averaging. We hope that our observations will allow others to get better results given their particular hardware and data constraints.